Deformations of Finsler metrics

by

Mihai Anastasiei and Hideo Shimada

Abstract. Let $F^n = (M, F(x, y))$ be a Finsler space and $g_{ij}(x, y)$ its Finsler metric. We consider a deformation of $g_{ij}(x, y)$ of the form

$$^*g_{ij}(x, y) = a(x, y)g_{ij}(x, y) + b(x, y)B_i(x, y)B_j(x, y),$$

with two Finsler scalars $a > 0$, $b \geq 0$ and $B_i(x, y)$ a Finsler co-vector. It follows that $^*g_{ij}$ is a generalised Lagrange metric in Miron’s sense, briefly a GL–metric, see the monograph by R. Miron and M. Anastasiei [8]. The metric $^*g_{ij}$ unifies the Antonelli metrics, the Miron–Tavakol metrics, the Synge metrics (all treated in [8]) as well as the Antonelli–Hrimiuc ϕ-Lagrange metrics, [2], the Beil metrics, [4], and the vertical part of the Cheeger–Gromoll metric, [10]. We prove some general results on the geometry of the GL-space $(M, ^*g_{ij}(x, y))$. Next, the Levi-Civita connection and the curvature of a Riemannian metric on the tangent manifold TM, induced by g_{ij} and $^*g_{ij}$ are determined. These are used for the study of a Riemannian submersion involving the Cheeger–Gromoll metric.

1 Deformations of Finsler metrics

Let $F^n = (M, F)$ be a Finsler space with a smooth i.e. C^∞ manifold M and $F : TM \to R, (x, y) \mapsto F(x, y)$. Here $x = (x^i)$ are coordinates on M and $(x, y) = (x^i, y^i)$ are coordinates on the tangent manifold TM projected on M by τ. The indices $i, j, k, ...$ will run from 1 to $n = \dim M$ and the Einstein convention on summation is implied. The geometrical objects on TM whose local components change like on M i.e. ignoring their dependence on y, will be called Finsler objects as in [7] or d–objects as in [8].
We set $\partial_i := \frac{\partial}{\partial x^i}, \dot{\partial}_i := \frac{\partial}{\partial y^i}$ and notice that the vertical subspace of $T_u T^* M$, i.e. $V_u T^* M = \text{Ker} \, (D\tau)_u, \ u \in TM$, where $D\tau$ means the differential of τ, is spanned by $(\dot{\partial}_i)$. The d–objects can be expressed using $(\dot{\partial}_i)$.

The Finsler metric $g_{ij}(x, y) = \frac{1}{2} \dot{\partial}_i \dot{\partial}_j F^2$ will be assumed positive definite.

We have $F^2(x, y) = g_{ij}(x, y)y^i y^j$ and F^2 will be called the absolute energy of F^n. Assume that F^n is endowed with a d-vector field or a Finsler vector field $B = B^i(x, y) \dot{\partial}_i$ and let $B_i(x, y) dx^i$ the Finsler 1-form with $B_i = g_{ik} B^k$. Set $B^2 = B_i B^i$ and consider the following deformation of $g_{ij}(x, y)$:

\begin{equation}
(1.1) \quad *g_{ij}(x, y) = a(x, y)g_{ij}(x, y) + b(x, y)B_i(x, y)B_j(x, y),
\end{equation}

with two Finsler scalars $a > 0, b \geq 0$. The metric $*g_{ij}$ is no longer a Finsler metric but it is a positive definite generalised Lagrange metric in Miron’s sense, briefly a GL–metric, see Ch.X in [8]. It is easy to check that $*g^{jk} = \frac{1}{a} g^{jk} - \frac{b}{a(a + b B^2)} c B^j B^k$ is the inverse of $*g_{ij}$ for $c = \frac{b}{a(a + b B^2)}$.

Various particular forms of $*g_{ij}(x, y)$ were previously considered by some authors. The conformal case i.e. $b = 0, a = \exp(2\sigma(x, y))$ was studied and applied by R. Miron and R.K. Tavakol in General Relativity. The case $a = 1$ and $B_i = y_i$ provides, for a convenient form of $b(x, y)$, a metric which generalises the Synge metric from Relativistic Optics. This case was studied by R. Miron and R. Miron, T. Kawaguchi. For $b = 0, a = \exp(2\sigma(x))$ and $g_{ij}(x, y) = g_{ij}(y)$ one gets the Antonelli metric which was used in Ecology. For the results on all these metrics we refer to the chapters XI and XII in [8] and the references therein. The case $a = b = 1$ and $B_i(x, y) = B_i(x) = \frac{\partial f}{\partial x^i}, f : M \rightarrow \mathbb{R}$ was considered by C. Udrişte in [11] for studying the completeness of a Finsler manifold. The Riemannian version of this case i.e. $g_{ij}(x, y) = g_{ij}(x)$ was intensively used by Th. Aubin in [3]. The case $a = 1$ and $g_{ij}(x, y) = g_{ij}(x)$ with various choices of b and B_i was introduced and studied by R. G. Beil for constructing a new unified field theory, [5].

One says that $*g_{ij}$ is reducible to a Lagrange metric, shortly an L–metric if there exists a Lagrangian $L : TM \rightarrow \mathbb{R}$ such that $*g_{ij} = \frac{1}{2} \partial_i \partial_j L$. A necessary and sufficient condition for $*g_{ij}$ be reducible to an L–metric is the
symmetry in all indices of the Cartan tensor field $C_{ijk} = \frac{1}{2} \partial_k g_{ij}$ i.e.

(1.2) $\hat{\partial}_k g_{ij} = \hat{\partial}_i g_{kj}$.

Using (1.1) this condition becomes

(1.3) $\dot{a}_k g_{ij} - \dot{a}_j g_{ik} + \dot{b}_k B_i B_j - \dot{b}_j B_i B_k + b(\hat{\partial}_k B_i \cdot B_j - \hat{\partial}_i B_k \cdot B_j + B_i \cdot \hat{\partial}_k B_j - B_k \cdot \hat{\partial}_i B_j) = 0,$ $\dot{a}_k := \hat{\partial}_k a, \dot{b}_k := \hat{\partial}_k b.$

Now we suppose that $a(x, y) = a(F^2)$ and $b(x, y) = b(F^2)$ assuming that the ranges of the real functions a and b from the right hand are included in $Im(F^2)$. It results $\dot{a}_k a = 2a'(F^2)y_i$ because of $\dot{\partial}_i F^2 = 2y_i$. Similarly, $\dot{b}_k b = 2b'(F^2)y_i$. We take $B_i = y_i$. For the GL-metric (1.1) subjected to the above conditions, (1.3) reduces to

(1.4) $(2a - b')(g_{ij} y_k - g_{ik} y_j) = 0.$

Now if the equation $g_{ij} y_k - g_{ik} y_j = 0$ is multiplied by g^{ij} one gets $(n-1)y_k = 0$ which is a contradiction for $n \geq 1$. Thus we have

Theorem 1.1. The GL-metric (1.1) with $B_i = y_i, a(x, y) = a(F^2), b(x, y) = b(F^2)$ is an L-metric if and only if $2a = b'$.

As always we may take $a = \phi'$, it comes out that the metric from Theorem 1.1 is essentially the ϕ-Lagrange metric of Antonelli- Hrimiuc,[2], i.e.

(1.5) $\ast g_{ij}(x, y) = ag_{ij}(x, y) + 2a' y_i y_j$

The Cheeger-Gromoll metric is a Riemannian metric on TM of the form

(1.6) $G_{CG} = g_{ij} dx^i \otimes dx^j + \frac{1}{1 + F^2} (g_{ij}(x) + y_i y_j) dy^i \otimes dy^j,$

for $\delta y^i = dy^i + \gamma^i_{jk} y^j dx^k$, where γ^i_{jk} are the Christoffel symbols of $g_{ij}(x)$. This suggests considering the following GL-metric of type (1.1) which generalises the "vertical part" in (1.6):

(1.7) $\ast g_{ij} = \frac{1}{1 + F^2} (g_{ij}(x) + y_i y_j),$

which we call a CGL-metric.

Corollary 1.1. The CGL-metric (1.7) is never reducible to a L-metric nor to a Finsler metric.
2 Metrical connection of the GL–space

\((M, *g_{ij}(x, y))\)

The geometry of \(\ast g_{ij}(x, y)\) is naturally connected with the geometry of \(F^n\). It is our purpose to express the geometrical objects associated to \(\ast g_{ij}(x, y)\) using similar ones for \(F^n\). If \(\gamma^i_{jk}(x, y)\) are the generalised Christoffel symbols for \(g_{ij}(x, y)\) and we put

\[\gamma^i_{00} := \gamma^i_{jk}y^jy^k, \]

then

\[\begin{align*}
 \circ N^i_{jk} &= \frac{1}{2} \partial_j \gamma^i_{00}, \\
 \circ C^i_{jk} &= \frac{1}{2} g^{ih}(\partial_j g_{hk} + \partial_k g_{jh} - \partial_h g_{jk}),
\end{align*} \]

for \(\delta_j = \partial_j - \circ N^k_{jk}\circ k\).

This connection is \(h\)–metrical, i.e. \(g_{ij}\circ = 0\) and \(v\)–metrical, i.e. \(g_{ij}\circ = 0\).

Here \(\circ k\) and \(\circ k\) denote the \(h\)– and \(v\)–covariant derivatives with respect to \(CT\). Moreover, two torsions of it vanish. We may consider a similar connection for \(\ast g_{ij}(x, y)\). Indeed, let \(\ast CT = (\circ N^i_{jk}, \ast F^i_{jk}, \ast C^i_{jk})\) be the \(d\)–connection given by

\[\begin{align*}
 \ast F^i_{jk} &= \frac{1}{2} g^{ih}(\delta_j \ast g_{hk} + \delta_k \ast g_{jh} - \delta_h \ast g_{jk}), \\
 \ast C^i_{jk} &= \frac{1}{2} g^{ih}(\partial_j \ast g_{hk} + \partial_k \ast g_{jh} - \partial_h \ast g_{jk}).
\end{align*} \]

This \(d\)–connection is \(h\)–metrical i.e. \(\ast g_{ij}\circ = 0\) and \(v\)–metrical i.e. \(\ast g_{ij}\circ = 0\) and the torsions \(\ast T^i_{jk} := \ast F^i_{jk} - \ast F^i_{kj} = 0\), \(\ast S^i_{jk} := \ast C^i_{jk} - \ast C^i_{kj} = 0\). Moreover, when \(\circ N^i_{jk}(x, y)\) is fixed, \(\ast CT\) is the unique \(d\)–connection with these properties. It will be called the canonical metrical connection of \(\ast g_{ij}(x, y)\). Using (1.1) in (2.2), after some calculation one gets

Proposition 2.1. The metrical connection \(\ast CT\) is given by

\[\begin{align*}
 \ast F^i_{jk} &= F^i_{jk} + \Phi^i_{jk}, \\
 \ast C^i_{jk} &= C^i_{jk} + \Lambda^i_{jk},
\end{align*} \]
\(\Phi_{jk}^i = \frac{1}{2} g^{ih} [a_j g_{hk} + a_k g_{jk} - a_h g_{jk} + \delta_j (bB_j B_h) + \\
+ \delta_k (bB_j B_h) - \delta_k (bB_j B_k)] - acB^i jh F_{jkh} \) (2.4)

\(\Lambda_{jk}^i = \frac{1}{2} g^{ih} [a_j g_{hk} + \dot{a}_j g_{jk} + \dot{a}_k g_{jk} + \dot{\delta}_j (bB_j B_h) + \\
+ \dot{\delta}_k (bB_j B_h) - \dot{\delta}_h (bB_j B_k)] - acB^i jh C_{jkh} \) (2.5)

with the notations

\[
a_k = \delta_k a, \quad \dot{a}_k = \dot{\delta}_k a, \quad F_{jkh} = \frac{1}{2}(\delta_j g_{hk} + \delta_k g_{jh} - \delta_h g_{jk}),
\]

(2.6)

\[
C_{jkh} = \frac{1}{2}(\dot{\delta}_j g_{kh} + \dot{\delta}_k g_{jh} - \dot{\delta}_h g_{jk}).
\]

Proposition 2.2. The torsions of \(^*\Gamma \) are as follows:

\(*T_{jk}^i = 0, \quad *R_{jk}^i = \check{R}_{jk}^i := \delta_k \check{N}_{j}^i - \delta_j \check{N}_{k}^i, \quad *S_{jk}^i = 0 \)

*\(P_{jk}^i = P_{jk}^i - \Phi_{jk}^i \) where \(P_{jk}^i = \dot{\delta}_k N_j^i - F_{jkh} \) and *\(C_{jk}^i \) from (2.3).

Proposition 2.3. The curvatures of \(^*\Gamma \) are as follows:

\(*S_{j}^i k h = S_{j}^i k h + \Lambda_{j}^i k h + (C_{j}^i s h \Lambda_{s}^i k h + C_{j}^i s h \Lambda_{j}^i s h - k/h), \) (2.8)

\(*\Lambda_{j}^i k h = \dot{\delta}_h \Lambda_{j}^i k h + \Lambda_{j}^i s h \Lambda_{s}^i k h - k/h, \) (2.8)'

where \(-k/h\) means the subtraction of the preceding terms with \(k \) replaced by \(h \).

\(*R_{j}^i k h = R_{j}^i k h + \Phi_{j}^i k h + (F_{j}^s s h \Phi_{j}^s k h + \Phi_{j}^s s h F_{j}^s k h - k/h) + \Lambda_{j}^i s h R_{k}^s h, \) (2.9)

\(*\Phi_{j}^i k h = \delta_k \Phi_{j}^i k h + \Phi_{j}^s s h \Phi_{j}^s k h - k/h, \) (2.9)'

\(*P_{j}^i k h = P_{j}^i k h + \Phi_{j}^i k h - \Lambda_{j}^i k h + \Lambda_{j}^i s h P_{k}^s k h + C_{k}^s h \Phi_{j}^s s h \Phi_{j}^s j h + \Phi_{j}^s s h \Lambda_{j}^i s h - \Phi_{j}^s s k \Lambda_{j}^i j h. \) (2.10)
3 On a Riemannian metric on TM

Let TM be the tangent manifold to M endowed with the fundamental Finsler function F and the Finsler metric $g_{ij}(x, y)$. Consider the Cartan nonlinear connection $(\tilde{N}^a_j(x, y))$ and then $(\delta_i = \partial_i - \tilde{N}^a_i \partial_a, \partial_a)$ is a local frame on TM adapted to the decomposition of T_uTM into a direct sum of vertical and horizontal subspaces. From now on we shall use two types of indices: $a, b, c, ...$ will indicate vertical components and $i, j, k, ...$ will indicate horizontal ones. All have the same range $\{1, 2, ..., n\}$.

Let be $h_{ab}(x, y) = \delta^i_a \delta^j_b g_{ij}(x, y)$, where δ^i_a is the Kronecker symbol, and

\begin{equation}
G(x, y) = g_{ij}(x, y)dx^i \otimes dx^j + h_{ab}(x, y)\delta y^a \otimes \delta y^b,
\end{equation}

where $\delta y^a = dy^a + \tilde{N}^a_i dx^i$.

Then $(TM, G(x, y))$ is an oriented Riemannian manifold. The horizontal and vertical distributions are mutually orthogonal with respect to G. It is our purpose to study the Riemannian metric G. First, we compute the coefficients of the Levi--Civita connection D of G in the frame (δ_i, ∂_a). We set

\begin{align}
D_{\delta_i} \delta_j &= F_{ij}^k \delta_k + A_{ij}^a \partial_a, \quad D_{\partial_b} \delta_j = C_{ija}^b \delta_i + E_{ij}^b \partial_a, \\
D_{\delta_i} \partial_b &= L_{bij}^a \partial_a + D_{bij} \delta_i, \quad D_{\partial_b} \partial_c = C_{abc}^a \partial_a + B_{abc} \delta_i
\end{align}

Let \mathfrak{T} be the torsion of D i.e. $\mathfrak{T}(X, Y) = D_X Y - D_Y X - [X, Y]$ for X, Y vector fields on TM. The condition D is torsion--free is equivalent to

\begin{equation}
\mathfrak{T}(\delta_i, \delta_j) = \mathfrak{T}(\delta_i, \partial_a) = \mathfrak{T}(\partial_a, \partial_b) = 0.
\end{equation}

Using the following equations

\begin{align}
[\delta_i, \delta_j] &= R_{ij}^a \partial_a, \quad [\delta_i, \partial_b] = (\partial_b N^a_i) \partial_a, \quad [\partial_a, \partial_b] = 0
\end{align}

where $R_{ij}^a = \delta_j N_i^a - \delta_i N_j^a$, one finds that (3.3) is equivalent to

\begin{align}
F_{ij}^k &= F_{ji}^k, \quad A_{ij}^a = -A_{ji}^a = -R_{ij}^a \\
D_{ai}^a &= C_{ia}^b, \quad L_{ai}^b = \partial_a N^b_i + E_{ia}^b \\
C_{bc}^a &= C_{cb}^a, \quad B_{bc}^i = B_{cb}^i
\end{align}

6
The condition that D is metrical, that is, $XG(X,Y) = G(D_XY,Z) + G(Y,D_XZ)$, written in the frame $(\delta_i, \hat{\partial}_a)$ gives
\[
F^h_{jk} g_{hk} + F^h_{kij} g_{hj} = \delta_i g_{jk}, \quad \tilde{C}^i_{ja} g_{ik} + \tilde{C}^i_{ka} g_{ij} = \hat{\partial}_a g_{jk},
\]
(3.6)\[\begin{align*}
A^i_{jk}, h_{ca} + D^h_{ak} g_{kj} = 0, & & E^a_{ja} h_{cb} + B^c_{ba} g_{kj} = 0, \\
L^a_{ai} h_{cb} + L^a_{ia} h_{ca} = \delta_i h_{ab}, & & C^a_{ba} h_{ec} + C^a_{ca} h_{eb} = \hat{\partial}_a h_{bc}.
\end{align*}\]

The systems (3.5) and (3.6) have the unique solution
\[
F^i_{jk} = \frac{1}{2} g^{jk} (\delta_i g_{hi} + \delta_j g_{hi} - \delta_h g_{ij}), \quad A^a_{jk} = \frac{1}{2} (-R^a_{jk} - h^{ab} \hat{\partial}_b g_{jk}),
\]
(3.7)\[
\tilde{C}^i_{ja} = \frac{1}{2} g^{jk} (\hat{\partial}_j g_{hi} + h_{bc} R^c_{hi}), \quad D^i_{bj} = D^i_{bj},
\]
\[
E^a_{ib} = \frac{1}{2} h^{ac} h_{bc ||i}, \quad L^a_{ba} = \hat{\partial}_b N^a_i + \frac{1}{2} h^{ac} h_{be ||i},
\]
\[
B^k_{ab} = -\frac{1}{2} g^{kji} h_{ab ||i}, \quad C^a_{ba} = \frac{1}{2} h^{ac} (\hat{\partial}_b h_{dc} + \hat{\partial}_b h_{bd} - \hat{\partial}_d h_{bc}).
\]

Here $h_{be ||i}$ denotes the h–covariant derivative of h_{bc} with respect to the Berwald connection $\overline{\Gamma} = (N^a_i, \hat{\partial}_b N^a_i, 0)$. Now we shall compute the components of the curvature of D in the same frame. To this aim we shall consider an intermediate linear connection ∇ on TM:
\[
\nabla_{\delta_j} \delta_k = F^i_{jk} \delta_i, \quad \nabla_{\hat{\partial}_b} \delta_j = D^i_{bj} \delta_i, \quad \nabla_{\delta_i} \hat{\partial}_b = L^a_{bk} \hat{\partial}_a, \quad \nabla_{\hat{\partial}_c} \hat{\partial}_d = C^a_{bd} \hat{\partial}_a.
\]
(3.8)

This connection is metrical with respect to G i.e. $\nabla_X G = 0$, it preserves the horizontal and vertical distributions and it has three non-vanishing torsions:

The curvature of ∇ has six components in the form (see p. 48 of [8]):
\[
\tilde{R}^i_{jk} g_{ij} = \delta_k F^i_{jk} + F^m_{kj} F^i_{mk} - j/k + D^i_{ah} R^a_{jk},
\]
\[
\tilde{R}^a_{jk} = \delta_k L^a_{bj} + L^a_{bj} L^a_{ck} - j/k + C^a_{be} R^c_{jk},
\]
\[
\tilde{P}^i_{jka} = \hat{\partial}_a F^i_{jk} - D^i_{aj} k + D^i_{bj} P^h_{ka},
\]
\[
P^a_{kc} = \hat{\partial}_c L^a_{bk} - C^a_{be ||k} + C^a_{bd} P^d_{jc},
\]
\[
\tilde{S}^i_{jbc} = \hat{\partial}_c D^i_{bj} + D^i_{bj} D^i_{ck} - b/c,
\]
\[
S^a_{cd} = \hat{\partial}_d C^a_{bc} + C^a_{be} C^a_{cd} - c/d.
\]
(3.9)
Here and in the following δ_k and $|_a$ will denote h– and v–covariant derivatives with respect to ∇.

Remark 3.1 S^{a}_{cd} is nothing but $^*S^{i}_{jh}$. And the other tensors in (3.9) can be expressed with $R^{i}_{jkh}, P^{i}_{jkh}, S^{i}_{jkh}$ or with their *–counterparts. For instance, $\hat{R}^{i}_{hjk} = R^{i}_{hjk} + \frac{1}{2} g^{is} h_{ac} R^{c}_{sh} R^{a}_{jk}$.

Let K be the curvature tensor field of the Levi–Civita connection D. We shall denote its components by the same letter K indexed with two types of indices with the understanding that different indices means different components. There will be twelve components of K. After calculation one finds

$$K(\hat{\partial}_b, \hat{\partial}_c)\hat{\partial}_d := K^{a}_{dcb} \hat{\partial}_a + K^{i}_{dcb} \delta_i,$$

(3.10)

$$K^{a}_{dcb} = S^{a}_{dcb} + B^{a}_{cd} E^{a}_{db} - B^{a}_{db} E^{a}_{ic},$$

$$K^{i}_{dcb} = \delta^{i}_{cd} - B^{i}_{bd} E^{i}_{ac},$$

$$K^{a}_{abdc} = S^{a}_{abdc} + \frac{1}{2} (B^{a}_{ad} h_{bc} - B^{a}_{ac} h_{bd}),$$

$$K^{i}_{abdc} = S^{i}_{abdc} + \frac{1}{2} B^{i}_{ad} h_{bc} - B^{i}_{ac} h_{bd},$$

(3.11)

$$K^{a}_{jkb} = A^{a}_{jkb} + E^{a}_{jb} D^{a}_{kb},$$

$$K^{i}_{jkb} = P^{i}_{jkb} + A^{i}_{jkb} - E^{i}_{jk} D^{i}_{kb},$$

$$K^{a}_{jk} = \tilde{R}^{a}_{jk} + \frac{1}{2} g^{ab} h_{jk} R^{b}_{ac},$$

$$K^{i}_{jk} = \tilde{P}^{i}_{jk} + \frac{1}{2} B^{i}_{jk} R^{i}_{bc} - R^{i}_{jk} B^{i}_{bc},$$

(3.12)

$$K(\delta_j, \delta_k)\hat{\partial}_b := K^{a}_{jk} \hat{\partial}_a + K^{i}_{jk} \delta_i,$$

(3.13)

$$K^{a}_{jk} = A^{a}_{jk} - E^{a}_{jb} h_{kc} + D^{a}_{kb} h_{jc},$$

$$K^{i}_{jk} = P^{i}_{jk} - E^{i}_{jk} D^{i}_{kb} + A^{i}_{jk} h_{bc},$$

$$K^{a}_{j} = \tilde{R}^{a}_{j} + \frac{1}{2} g^{ab} h_{kj} R^{b}_{ac},$$

$$K^{i}_{j} = \tilde{P}^{i}_{j} + \frac{1}{2} B^{i}_{j} R^{i}_{bc} - R^{i}_{jk} B^{i}_{bc},$$

(3.14)
$K(\delta_j, \delta_k)\delta_h := K_h^{\alpha}k_j \dot{\alpha}_a + K_h^{\alpha}k_j \dot{\alpha}_i,$

\begin{align*}
K_h^{i}k_j &= \tilde{R}_h^{i}k_j + A^b_hk D^i_{kj} - A^b_hk D^i_{bk}, \\
K_h^{a}k_j &= A^a_{hkj} - A^a_{hjk} + R^c_{kj} E_{hc}, \\
K_h^{ikj} &= R_{hikj} + D_{ibj} A^b_{hk} - D_{ibk} A^b_{hj},
\end{align*}

Now easily follows

Proposition 3.1. The sectional curvatures of D are as follows:

\begin{align*}
K_{ab} &= [S_{a}^{\alpha\beta} + \frac{1}{2}(B_{aa}h_{bb}h_{ii} - B_{ab}h_{ab}h_{ii})]/(h_{aa}h_{bb} - h_{ab}^2), \\
K_{ja} &= (A_{ajj})^a - E_{ajh}^a h_{aj} D^h_{aj} + E_{ajc} P^c_{ja})/g_{jj} g_{aa}, \\
K_{ji} &= (R_{jij} + D_{ibi} A^b_{jj} - D_{ibj} A^b_{ji})/(g_{ii} g_{jj} - g_{ij}^2).
\end{align*}

In the following we assume that F^n reduces to a Riemannian space i.e. $g_{ij}(x, y) = g_{ij}(x)$. The Cartan nonlinear connection reduces to $\tilde{N}_j^i(x, y) = \gamma_{jk}^i(x)y^k$, where $(\gamma_{jk}^i(x))$ are the Christoffel symbols of the metric $g = (g_{ij}(x))$. We consider the corresponding Riemannian metric G given by (3.1) and we have

Proposition 3.2. The mapping $\tau : (TM, G) \to (M, g)$ is a Riemannian submersion.

Indeed, τ is of maximal rank n and its differential $D\tau$ preserves the lengths of horizontal vectors as it follows from $G(\delta_i, \delta_j) = g_{ij}(x)$.

Let h and v denote the projections of $T_x TM$ onto the subspaces of horizontal and vertical vectors, respectively. Following B.O’Neil, [9], the fundamental tensor fields of the Riemannian submersion τ are as follows:

\begin{align*}
S(X, Y) &= hD_{a}X + vD_{a}hX, \\
N(X, Y) &= vD_{h}X + hD_{h}vY, \quad X, Y \in \mathcal{X}(TM).
\end{align*}

In the frame $(\delta_i, \dot{\alpha}_a)$ we have

\begin{align*}
S(\delta_i, \dot{\delta}_j) &= 0, S(\delta_i, \dot{\alpha}_a) = 0, S(\dot{\alpha}_a, \delta_i) = E^j_{ia} \delta_j, S(\dot{\alpha}_a, \dot{\alpha}_b) = B^i_{ab} \delta_i. \\
N(\delta_i, \dot{\delta}_j) &= \frac{1}{2} R_{ij}^a \dot{\alpha}_a, N(\delta_i, \dot{\alpha}_a) = D^i_{ai} \delta_j, N(\dot{\alpha}_a, \delta_i) = 0, N(\dot{\alpha}_a, \dot{\alpha}_b) = 0
\end{align*}

By (3.19) and (3.7) it follows
Proposition 3.3. The Riemannian submersion \(\tau : (TM, G) \to (M, g) \) is totally geodesics, i.e. \(S = 0 \) if and only if

\[
* g_{ij} \parallel k = 0,
\]

where \(\parallel k \) denotes the \(h \)-covariant derivative with respect to the Berwald connection \((\gamma^i_{jk}(x)y^k, \gamma^i_{jk}(x), 0) \).

Proposition 3.4. The tensor field \(N \) vanishes if and only if the Riemannian metric \(g \) is flat.

4 Deformations of Riemannian metrics

The geometrical objects associated to \(* g_{ij}(x,y) \) are generally complicated. Some simplifications appear for particular choices of \(a, b \) and \(B_i \). We studied in a previous paper, [1], the case \(a = 1 \) and a concurrent d-vector field \(B^i(x,y) \) while M. Kitayama studied the case \(a = 1 \) and a parallel d-vector field \(B^i(x,y) \), [6]. Here we selected for a detailed analysis the following deformation of a Riemannian metric \(g = (g_{ij}(x)) \):

\[
\begin{align*}
* g_{ij}(x,y) &= a(F^2)g_{ij}(x) + b(F^2)y_iy_j, \\
G(x,y) &= g_{ij}(x,y)dx^i \otimes dx^j + (a(F^2)g_{ij}(x) + b(F^2)y_iy_j)\delta x^a \otimes \delta x^b,
\end{align*}
\]

where \(F^2(x,y) = g_{ij}(x)y^iy^j, y_i = g_{ij}(x)y^j \).

Accordingly, we consider the Riemannian submersion \(\tau : (TM, G) \to (M, g) \), where

\[
\begin{align*}
\Gamma &= (\gamma^i_{jk}(x)y^i, \gamma^i_{jk}(x), 0). \\
\n\end{align*}
\]

The Cartan connection for \((M, g_{ij}(x))\) reduces to

\[
\begin{align*}
\n\end{align*}
\]

The \(GL \)-metric (4.1) contains as a particular case the \(\phi \)-Lagrange metric associated to a Riemannian space while \(G \) generalises the Cheeger–Gromoll metric studied by Sekizawa [10]. The Cartan connection for \((M, g_{ij}(x))\) reduces to

\[
\begin{align*}
\n\end{align*}
\]

The \(v \)-covariant derivative \(\nabla^v \parallel k \) coincides with the partial derivative with respect to \((y^k) \). The \(h \)-covariant derivative \(\nabla^h \parallel k \) reduces to the usual covariant derivative for the objects which do not depend on \((y^i) \) and coincides with \(\parallel k \) for the others.

We notice for the later use the following formulae

\[
\begin{align*}
\delta_k F^2 = 0, y^i_{\parallel k} = 0, y^i_{\nabla^v k} = 0, y^i_{\nabla^h k} = \delta^i_k, y^i_{\nabla^h k} = g_{ik}(x)
\end{align*}
\]
\[\delta_k a = 0, \quad \delta_k b = 0 \]
\[\dot{\delta}_k a = 2a' y_k, \quad \dot{\delta}_k b = 2b' y_k. \]

By a direct calculation one proves

Proposition 4.1. The d–connection \(C \) of the GL–metric (4.1) is given by

\[*F_{jk}^i = \gamma_{jk}^i(x) \text{i.e.} \quad \Phi_{jk}^i = 0 \]
\[*C_{jk}^i(x, y) = \Lambda_{jk}^i(x, y) = \frac{a'}{a} (\delta_k^j y_j + \delta_j^k y_k) + \frac{b - a'}{a + bF^2} y_j y_k + \frac{ab' - 2a'b}{a(a + bF^2)} y^i y_j y_k. \]

From (4.3) and (4.4) it results

\[*g_{ij}^k = 0, \quad *g_{ij}^k|_k = 2a' g_{ij} y_k + b(g_{ik} y_j + g_{jk} y_i) + 2b' y_i y_j y_k. \]

Thus \(*g_{ij} \) is \(h \)–metrical and not \(v \)–metrical with respect to \(C \). The torsions of \(*C \) of the GL–metric (4.1) are vanishing excepting \(*R_{jk}^i = \gamma_{jk}^i(x)y^h \) and \(*C_{jk}^i \) from (4.5). As for its curvatures we find

\[*R_{jk}^i = r_{jk}^i(x) + \Lambda_{jk}^i R_{kh}^i, \]
\[*P_{jk}^i = 0 \text{ because of } \Lambda_{jk}^i \neq 0, \]
\[*S_{jk}^i = \Lambda_{jk}^i \text{ from (2.8)'}, \]

where \(r_{jk}^i \) is the curvature tensor of \((g_{ij}(x)) \).

Using \(y_s R_{kh}^s = y_s r_{kh}^s p^p y^p = r_{ikh} y^i y^k = 0 \), one gets

\[*R_{jk}^i = r_{jk}^i(x) + \frac{a'}{a} y_j R_{kh}^i + \frac{b - a'}{a + bF^2} y_j R_{jkh}, \]
\[*R_{0}^i = \left(1 + \frac{a' F^2}{a} \right) R_{kh}^i. \]
where “0” denotes the contraction by (y^j).

Now we consider the Riemannian metric G given by (4.2). The Levi–Civita connection of it has the local coefficients

$$
F^k_{ij} = \gamma^k_{ij}(x), \quad A^a_{jk} = -\frac{1}{2}r^a_{0\ jk},
$$

(4.10)

$$
D^i_{bj} = \frac{a}{2}r^i_{b\ j0} = \tilde{C}^i_{jb},
$$

$$
E^a_{ib} = 0 = B^k_{ab}, \quad L^a_{bi} = \gamma^a_{bi}(x), \quad C^a_{bc} = \Lambda^a_{bc}.
$$

The curvature of ∇ from (3.9) reduces to

$$
\tilde{R}^i_{h\ jk} = r^i_{h\ jk}(x) + \frac{a}{2}r^i_{h\ a0} \cdot r^a_{0\ jk},
$$

$$
\tilde{R}^a_{b\ jk} = *R^a_{b\ jk},
$$

$$
\tilde{P}^i_{j\ ka} = -\frac{a}{2}r^i_{j\ a0\ k},
$$

(4.11)

$$
P^a_{b\ kc} = 0 \text{ because of } \Lambda^a_{bc|k} = 0,
$$

$$
\tilde{S}^i_{j\ bc} = ar^i_{j\ bc} + \left(a'y_c r^i_{j\ b0} + \frac{a^2}{4}r^h_{j\ b0}a^h_{k0} - b/c\right),
$$

$$
S^a_{b\ cd} = \Lambda^a_{bcd}.
$$
The curvature of the Levi–Civita connection D are given by

$$
K^a_{bc} = \Lambda^a_{bc}, \quad K^i_{cb} = 0,
$$

$$
K^i_{bc} = \tilde{S}^i_{bc}, \quad K^a_{bc} = 0,
$$

$$
K^a_{jb} = 0, \quad K^i_{jb} = \frac{a}{2} r^i_{jb} - \frac{a'}{2} y b r^i_{0 j} - \frac{a'}{2} y c r^i_{0 j} + \frac{a^2}{4} s^i_{s b} r^s_{j c},
$$

$$
K^a_{jkc} = \tilde{S}^a_{jkc}, \quad K^i_{jkc} = 0,
$$

$$
K^a_{kjc} = 0, \quad K^i_{kjc} = \frac{a}{2} r^a_{jkc} - \frac{a'}{2} y b r^a_{0 kc} - \frac{b - a'}{2(a + b F^2)} y^a r^b_{0 jk},
$$

$$
K^a_{ikb} = - \frac{a}{2} r^a_{ikb} + \frac{a'}{4} r^a_{0 ik} - \frac{a'}{2} y b r^a_{0 jk} - \frac{b - a'}{2(a + b F^2)} y^a r^b_{0 jk},
$$

$$
K^i_{ikb} = \frac{a}{2} (r^i_{0 ib} - r^i_{0 b}; k),
$$

$$
K^a_{hjk} = r^a_{hjk} + \frac{a}{2} r^a_{0 hjk} - \frac{a'}{4} r^0_{hjk} r^i_{a 0},
$$

$$
K^i_{hjk} = \frac{1}{2} (r^0_{hjk} - r^0 a h k i).
$$

An inspection of (4.11) and (4.12) gives

Theorem 4.1. If (M, g) is flat, then (TM, G) is flat if and only if $\Lambda^i_{jkh} = 0$.

This theorem shows that G is less "rigid" than the Sasaki metric of $(g_{ij}(x))$ which is locally flat if and only if $(g_{ij}(x))$ is locally flat.

Now if we fix $x = x_0$, then $g_{ij}(x_0, y)$ is a Riemannian metric in the fibre $T_{x_0}M$ and Λ^i_{jkh} is just its curvature tensor field. Thus we may reformulate Theorem 4.1 in the form

Theorem 4.1’. If (M, g) is flat, then (TM, G) is flat if and only if $(T_{x_0}(M), g_{ij}(x_0, y))$ is a flat Riemannian manifold for every $x_0 \in M$.

For the conformal case i.e. $b = 0$ one finds

$$
\Lambda^i_{jk} = \frac{a'}{a} (\delta^i_k y_j - \delta^i_j y_k - y^i g_{jk})
$$

(4.13)
\[\Lambda^{\dot{j}}_{k^h} = \left[2 \left(\frac{a'}{a} \right)' - \frac{a'^2}{a} \right] (\delta^i_k y_i y_j + y^i y_k g_{j} - h/k) + \frac{a'^2}{a} F^2 (\delta^i_k g_{j} - \delta^i_k g_{j}) \] (4.14)

It follows

Proposition 4.2. \(\Lambda^{\dot{j}}_{k^h} = 0 \iff a = \text{constant} \).

From Theorem 3.3 and (4.6) one deduces

Proposition 4.3. The Riemannian submersion \(\tau : (TM, G) \rightarrow (M, g) \) with \(G \) given by (4.2) is totally geodesics.

The other consequences of the previous formulae will be presented elsewhere.

References

University ”Al.I.Cuza” Iași
Faculty of Mathematics
6600, Iași, Romania

Hokkaido Tokai University
Minami-ku, Minami-sawa
5-1, Sapporo 005, Japan