• Finite groups with two Chermak-Delgado measures, submitted.

  • The number of cyclic subgroups of finite abelian groups and Menon's identity, submitted.

  • A note on the number of cyclic subgroups of a finite group (with M.S. Lazorec), submitted.

  • Breaking points in the poset of conjugacy classes of subgroups of a finite group, submitted.

  • On the Chermak-Delgado lattice of a finite group (with R. McCulloch), submitted.

  • On some probabilistic aspects of (generalized) dicyclic groups (with M.S. Lazorec), submitted, cited by:

      • M.S. Lazorec, Probabilistic aspects of ZM-groups, 2017.

  • A characterization of PSL(2,q), q=5,7, accepted for publication in Algebra Colloq.

  • Finite groups with two relative subgroup commutativity degrees (with M.S. Lazorec), accepted for publication in Publ. Math. Debrecen, cited by:

      • M.S. Lazorec, Relative cyclic subgroup commutativity degrees of finite groups, 2018.

  • A note on subgroup commutativity degrees of finite groups, accepted for publication in Quaest. Math.

  • Cyclic factorization numbers of finite groups (with M.S. Lazorec), accepted for publication in Ars Combin., cited by:

      • M.S. Lazorec, Probabilistic aspects of ZM-groups, 2017.

  • Finite groups with a certain number of cyclic subgroups II, Acta Univ. Sapientiae, Math., vol. 10 (2018), no. 2 (pdf), cited by:

      • W. Zhou, On the number of cyclic subgroups in finite groups, 2016.
      • W. Zhou, Finite groups with small number of cyclic subgroups, 2016.
      • S.M. Robati, On finite groups having a certain number of cyclic subgroups, 2018.

  • Minimal non-Iwasawa finite groups, Results Math., vol. 73 (2018), no. 4, article ID 143, MR 3862790 (pdf), cited by:

      • M.S. Lazorec, Relative cyclic subgroup commutativity degrees of finite groups, 2018.

  • Addendum to "On a generalization of the Gauss formula", Asian-Eur. J. Math., vol. 11 (2018), no. 4, article ID 1891001, MR 3835712, ZBL 1392.20014 (pdf).

  • Breaking points in centralizer lattices, C. R. Math. Acad. Sci. Paris, vol. 356 (2018), no. 8, 843-845, MR 3851536, ZBL 06917459 (pdf).

  • A nilpotency criterion for finite groups, Acta Math. Hung., vol. 155 (2018), no. 2, 499-501, MR 3831314 (pdf), cited by:

      • A.D. Ramos, A. Viruel, A p-nilpotency criterion for finite groups, 2018.

  • Factorization numbers of finite rank 3 abelian p-groups, J. Combin. Math. Combin. Comput., vol. 105 (2018), 77-80, MR 3790850, ZBL 06902637 (pdf).

  • Cyclic subgroup commutativity degrees of finite groups (with M.S. Lazorec), Rend. Semin. Mat. Univ. Padova, vol. 139 (2018), 225-240, MR3825188, ZBL 06898047 (pdf), cited by:

      • M.S. Lazorec, Probabilistic aspects of ZM-groups, 2017.
      • M.S. Lazorec, Relative cyclic subgroup commutativity degrees of finite groups, 2018.

  • Two classes of finite groups whose Chermak-Delgado lattice is a chain of length zero (with R. McCulloch), Comm. Algebra, vol. 46 (2018), no. 7, 3092-3096, MR 3780847, ZBL 06900829 (pdf).

  • On the poset of classes of isomorphic subgroups of a finite group, Int. J. Open Problems Compt. Math., vol. 11 (2018), no. 3, 32-36 (pdf).

  • A note on the Chermak-Delgado lattice of a finite group, Comm. Algebra, vol. 46 (2018), no. 1, 201-204, MR 3764856, ZBL 1394.20012 (pdf), cited by:

      • R. McCulloch, Finite groups with a trivial Chermak-Delgado subgroup, J. Group Theory, vol. 21 (2018), no. 3, 449-461.

  • The Chermak-Delgado lattice of ZM-groups, Results Math., vol. 72 (2017), no. 4, 1849-1855, MR 3735527, ZBL 1386.20014 (pdf).

  • Addendum to "On finite groups with perfect subgroup order subsets", Int. J. Open Problems Compt. Math., vol. 10 (2017), no 2, 17-19 (pdf).

  • Finite groups determined by an inequality of the orders of their subgroups II, Comm. Algebra, vol. 45 (2017), no. 11, 4865-4868, MR 3670357, ZBL 1375.20025 (pdf).

  • A note on a class of gyrogroups, Quasigroups Related Systems, vol. 25 (2017), no. 1, 151-154, MR 3651039, ZBL 1371.20059 (pdf), cited by:

      • Abraham A. Ungar, Symmetry groups of systems of entangled particles, J. Geom. Symmetry Phys., vol. 48 (2018), 47-77.

  • On the number of subgroups of a given exponent in a finite abelian group (with L. Tóth), Publ. Inst. Math. Beograd, vol. 101 (115) (2017), 121-133, MR 3700407 (pdf), cited by:

      • A. Sehgal, S. Sehgal, P.K. Sharma, The number of subgroups of a finite abelian p-group of rank three, 2016.
      • L. Tóth, The number of subgroups of the group Z_m × Z_n × Z_r × Z_s, 2016.
      • L. Tóth, Characteristic subgroup lattices and Hopf-Galois structures, 2018.

  • On a generalization of the Gauss formula, Asian-Eur. J. Math., vol. 10 (2017), no. 1, article ID 1750008, MR 3627663, ZBL 1367.20025 (pdf).

  • The posets of classes of isomorphic subgroups of finite groups, Bull. Malays. Math. Sci. Soc., vol. 40 (2017), no. 1, 163-172, MR 3592900, ZBL 1356.20011 (pdf).

  • Normality degrees of finite groups, Carpathian J. Math., vol. 33 (2017), no. 1, 115-126, MR 3727209, ZBL 06897313 (pdf), cited by:

      • F.G. Russo, Strong subgroup commutativity degree and some recent problems on the commuting probabilities of elements and subgroups, Quaest. Math., vol. 39 (2016), no. 8, 1019-1036.
      • M.S. Lazorec, Relative cyclic subgroup commutativity degrees of finite groups, 2018.

  • On the factorization numbers of some finite p-groups, Ars Combin., vol. 128 (2016), 3-9, MR 3526148, ZBL 06644255 (pdf), cited by:

      • D.E. Otera, F.G. Russo, Permutability degrees of finite groups, Filomat, vol. 30 (2016), no. 8, 2165-2175.
      • Y. Wang, G. Peng, F. Zhou, Factorization number of a class of generalized extraspecial p-groups, Henan Sci., vol. 34 (2016), no. 12, 1949-1955.
          • M.S. Lazorec, Probabilistic aspects of ZM-groups, 2017.

  • On the number of diamonds in the subgroup lattice of a finite abelian group (with D.G. Fodor), Sci. An. Univ. "Ovidius" Constanţa, ser. Math., vol. XXIV (2016), fasc. 2, 205-215, MR 3546637, ZBL 1389.20036 (pdf).

  • A new equivalence relation to classify the fuzzy subgroups of finite groups, Fuzzy Sets and Systems, vol. 289 (2016), 113-121, MR 3454465, ZBL 1374.20077 (pdf), cited by:

      • G. Ali, On fuzzy generalizations of some results in finite group theory, Master Degree Thesis, COMSATS Institute of Information Technology, Lahore, Pakistan, 2016.
      • A. Olayiwola, On explicit formula for calculating the number of fuzzy subgroups of some dihedral groups, 2016.
      • A. Olayiwola, On distinct fuzzy subgroups of non-trivial semi-direct product of Z_4 and Z_4, ATBU J. Sci. Tech. Edu., vol. 5 (2017), no. 2, 175-179.
      • M.E. Ogiugo, M. Enioluwafe, Classifying a class of the fuzzy subgroups of the alternating groups A_n, IMHOTEP - Math. Proc., vol. 4 (2017), no. 1, 27-33.
      • A. Olayiwola, B.A. Suleiman, On the number of distinct fuzzy subgroups for some elementary abelian groups and quaternion groups, Fuzzy Math. Arch., vol. 13 (2017), no. 1, 17-23.
      • M.E. Ogiugo, M. Enioluwafe, On the number of fuzzy subgroups of a symmetric group S_5, 2017.
      • A. Abbas, U. Hayat, D. López-Aguayo, Fixed points of automorphisms of certain non-cyclic p-groups and the dihedral group, Symmetry, vol. 10 (2018), no. 7, article ID 238.
      • A. Olayiwola, B. Isyaku, The number of distinct fuzzy subgroups of dihedral group of order 60, JQMA, vol. 14 (2018), no. 1, 67-79.

  • The subgroup commutativity degree of finite P-groups, Bull. Aust. Math. Soc., vol. 93 (2016), no. 1, 37-41, MR 3436013, ZBL 1343.20030 (pdf), cited by:

      • F.G. Russo, Strong subgroup commutativity degree and some recent problems on the commuting probabilities of elements and subgroups, Quaest. Math., vol. 39 (2016), no. 8, 1019-1036.

  • The number of chains of subgroups of a finite elementary abelian p-group, Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar., vol. 77 (2015), no. 4, 65-68, MR 3452533, ZBL 1363.20076 (pdf).

  • A generalization of the Euler's totient function, Asian-Eur. J. Math., vol. 8 (2015), no. 4, article ID 1550087, MR 3424162, ZBL 1336.20029 (pdf), cited by:

      • A.D. Ramos, A. Viruel, A p-nilpotency criterion for finite groups, 2018.

  • Solitary subgroups and solitary quotients of ZM-groups, Sci. Stud. Res., Ser. Math. Inform., vol. 25 (2015), no. 1, 237-242, MR 3384660, ZBL 1349.20018 (pdf).

  • Finite groups with a certain number of cyclic subgroups, Amer. Math. Monthly, vol. 122 (2015), no. 3, 275-276, MR 3327719, ZBL 1328.20045 (pdf), cited by:

      • J. Dillstrom, On the number of distinct cyclic subgroups of a given finite group, Master Degree Thesis, Missouri State University, USA, 2016.
      • W. Zhou, On the number of cyclic subgroups in finite groups, 2016.
      • W. Zhou, Finite groups with small number of cyclic subgroups, 2016.
      • J. Wang, D. Jiang, M. Zhong, A characterization of alternating group of degree four, J. Xiamen Univ. (Nat. Sci.), vol. 56 (2017), no. 1, 142-143.
      • I. Lima, M. Garonzi, On the number of cyclic subgroups of a finite group, 2017.
      • I. Lima, R. Bastos, J.R. Rogério, Maximal covers of finite groups, 2018.
      • H. Kalra, Finite groups with specific number of cyclic subgroups, 2018.
      • S.M. Robati, On finite groups having a certain number of cyclic subgroups, 2018.
      • R. Belshoff, J. Dillstrom, R. Reid, Finite groups with a prescribed number of cyclic subgroups, 2018.

  • Cyclicity degrees of finite groups (with L. Tóth), Acta Math. Hung., vol. 145 (2015), no. 2, 489-504, MR 3325804, ZBL 1348.20027 (pdf), cited by:

      • M.H. Jafari, A.R. Madadi, On the number of cyclic subgroups of a finite group, Bull. Korean Math. Soc., vol. 54 (2017), no. 6, 2141-2147.
      • M.S. Lazorec, Probabilistic aspects of ZM-groups, 2017.

  • Classifying fuzzy normal subgroups of finite groups, Iran. J. Fuzzy Syst., vol. 12 (2015), no. 2, 107-115, MR 3363581, ZBL 1336.20066 (pdf), cited by:

      • G. Ali, On fuzzy generalizations of some results in finite group theory, Master Degree Thesis, COMSATS Institute of Information Technology, Lahore, Pakistan, 2016.
      • B. Davvaz, R.K. Ardekani, Counting fuzzy normal subgroups of non-abelian finite groups, J. Mult.-Valued Logic Soft Comput., vol. 28 (2017), no. 6, 571-590.
      • R.K. Ardekani, B. Davvaz, Classifying fuzzy subgroups and fuzzy normal subgroups of the group D_{2p} × Z_q and finite groups of order n <= 20, J. Intell. Fuzzy Syst., vol. 33 (2017), no. 6, 3615-3627.
      • U. Shuaib, M. Shaheryar, W. Asghar, On some characterizations of o-fuzzy subgroups, Int. J. Math. Comp. Sci., vol. 13 (2018), no. 2, 119-131.

  • On finite groups with dismantlable subgroup lattices, Canad. Math. Bull., vol. 52 (2015), no. 1, 182-187, MR 3303222, ZBL 1323.20019 (pdf).

  • A note on a metric associated to certain finite groups, Math. Pannonica, vol. 25 (2014-2015), no. 2, 57-61, MR 3699234 (pdf), cited by:

      • M.M. Deza, E. Deza, Enciclopedia of distances, Distances in Algebra, Springer, 2016, 199-214.

  • On the converse of Fuzzy Lagrange's Theorem, J. Intell. Fuzzy Syst., vol. 27 (2014), no. 3, 1487-1490, MR 3259362, ZBL 1310.20067 (pdf), cited by:

      • V.H.M. Padilla, Los teoremas de Cayley y de Lagrange para grupos difusos, Bachelor Thesis, Universidad Nacional de Trujillo, Facultad de Ciencias Físicas y Matematicás, Trujillo, Perú, 2016.

  • The normal subgroup structure of ZM-groups, Ann. Mat. Pura Appl., vol. 193 (2014), no. 4, 1085-1088, MR 3237917, ZBL 1304.20034 (pdf).

  • Remarks on the exponent function associated to a finite group, Sci. Stud. Res., Ser. Math. Inform., vol. 24 (2014), no. 1, 141-147, MR 3245073, ZBL 1313.20013 (pdf).

  • Non-CLT groups of order pq^3, Math. Slovaca, vol. 64 (2014), no. 2, 311-314, MR 3201346, ZBL 1349.20028 (pdf).

  • On finite groups with perfect subgroup order subsets, Int. J. Open Problems Compt. Math., vol. 7 (2014), no. 1, 41-46 (pdf).

  • On the sum of element orders of finite abelian groups (with D.G. Fodor), Sci. An. Univ. "Al. I. Cuza" Iaşi, ser. Math., tome LX (2014), fasc. 1, 1-7, MR 3252452, ZBL 1299.20059 (pdf), cited by:

      • C.Y. Chew, A.Y.M. Chin, C.S. Lim, Sum of element orders of finite abelian groups, Proceedings of The 3rd International Conference on Computer Science and Computational Mathematics (ICCSCM), Langkawi, Malaysia, 2014, 129-132.
      • S.M. Jafarian Amiri, M. Amiri, Characterization of p-groups by sum of the element orders, Publ. Math. Debrecen, vol. 86 (2015), no. 1-2, 31-37.
      • S.M. Jafarian Amiri, M. Amiri, Second maximum sum of the product of the orders of two distinct elements in nilpotent groups, 2015.
      • C.Y. Chew, A.Y.M. Chin, C.S. Lim, A recursive formula for the sum of element orders of finite abelian groups, Results Math., vol. 72 (2017), no. 4, 1897-1905.

  • A characterization of elementary abelian 2-groups, Arch. Math., vol. 102 (2014), no. 1, 11-14, MR 3154153, ZBL 1330.11015 (pdf); see also Erratum to "A characterization of elementary abelian 2-groups", Arch. Math., vol. 108 (2017), no. 2, 223-224, MR 3605067, ZBL 06695534 (pdf), cited by:

      • W.A. Moens, Arithmetically-free group-gradings of Lie algebras, 2016.
      • C.S. Anabanti, A characterization of elementary abelian 3-groups, 2016.

  • Some combinatorial aspects of finite Hamiltonian groups, Bull. Iranian Math. Soc., vol. 39 (2013), no. 5, 841-854, MR 3126183, ZBL 1303.20020 (pdf), cited by:

      • A.R. Ashrafi, A. Hamzeh, The order supergraph of the power graph of a finite group, Turkish J. Math., vol. 42 (2018), no. 4, 1978-1989.

  • A note on the product of element orders of finite abelian groups, Bull. Malays. Math. Sci. Soc., vol. 36 (2013), no. 4, 1123-1126, MR 3108800, ZBL 1280.20058 (pdf), cited by:

      • A. Erfanian, F.M.A. Manaf, F.G. Russo, N.H. Sarmin, On the exterior degree of the wreath product of finite abelian groups, Bull. Malays. Math. Sci. Soc., vol. 37 (2014), no. 1, 25-36.
      • S.M. Jafarian Amiri, M. Amiri, Second maximum sum of the product of the orders of two distinct elements in nilpotent groups, 2015.
      • S.M. Jafarian Amiri, M. Amiri, Sum of the element orders in groups of the square-free orders, Bull. Malays. Math. Sci. Soc., vol. 40 (2017), no. 3, 1025-1034.

  • On the number of fuzzy subgroups of finite symmetric groups, J. Mult.-Valued Logic Soft Comput., vol. 21 (2013), no. 1-2, 201-213, MR 3113673, ZBL 1393.20049 (pdf), cited by:

      • B. Davvaz, R.K. Ardekani, Counting fuzzy normal subgroups of non-abelian finite groups, J. Mult.-Valued Logic Soft Comput., vol. 28 (2017), no. 6, 571-590.
      • M.E. Ogiugo, M. Enioluwafe, Classifying a class of the fuzzy subgroups of the alternating groups A_n, IMHOTEP - Math. Proc., vol. 4 (2017), no. 1, 27-33.
      • R.K. Ardekani, B. Davvaz, Classifying fuzzy subgroups and fuzzy normal subgroups of the group D_{2p} × Z_q and finite groups of order n <= 20, J. Intell. Fuzzy Syst., vol. 33 (2017), no. 6, 3615-3627.
      • M.E. Ogiugo, M. Enioluwafe, On the number of fuzzy subgroups of a symmetric group S_5, 2017.

  • Counting certain sublattices in the subgroup lattice of a finite abelian group (with D.G. Fodor), Sci. An. Univ. Craiova, vol. 40 (2013), no. 1, 106-111, MR 3078964, ZBL 1289.20033 (pdf), cited by:

      • H. Mukherjee, On the number of non-comparable pairs of elements in a distributive lattice, 2013.
      • A. Olayiwola, A.D. Akinremi, On subgroups lattice of some A_2-groups, ATBU J. Sci. Tech. Edu., vol. 5 (2017), no. 2, 180-186.

  • A characterization of the quaternion group, Sci. An. Univ. "Ovidius" Constanţa, ser. Math., vol. XXI (2013), fasc. 1, 209-214, MR 3065384 (pdf), cited by:

      • D. Savin, About some split central simple algebras, Sci. An. Univ. "Ovidius" Constanţa, ser. Math., vol. XXII (2014), fasc. 1, 263-272.
      • C. Flaut, D. Savin, Some properties of symbol algebras of degree three, Math. Reports, vol. 16 (2014), no. 3, 443-463.
      • C. Flaut, A Clifford algebra associated to generalized Fibonacci quaternions, Adv. Difference Equ., vol. 2014, article ID 279.
      • C. Flaut, D. Savin, Some examples of division symbol algebras of degree 3 and 5, Carpath. J. Math., vol. 31 (2015), no. 2, 197-204.
      • D. Savin, Some properties of Fibonacci numbers, Fibonacci octonions, and generalized Fibonacci-Lucas octonions, Adv. Difference Equ., vol. 2015, article ID 298.
      • D. Savin, Special numbers, special quaternions and special symbol elements, 2017.

  • Classifying fuzzy subgroups for a class of finite p-groups, Critical Review (a publication of Society for Mathematics of Uncertainty), vol. VII (2013), 30-39 (pdf), cited by:

      • S.A. Adebisi, The classification of the fuzzy subgroups for a class of finite nilpotent groups, 2015.
      • M.M. Munywoki, B.B. Makamba, Classifying fuzzy subgroups of the abelian group Z_{p_1} × Z_{p_2} × ... × Z_{p_n} for distinct primes p_1, p_2, ..., p_n, Ann. Fuzzy Math. Inform., vol. 13 (2017), no. 2, 289-296.
      • B. Davvaz, R.K. Ardekani, Counting fuzzy normal subgroups of non-abelian finite groups, J. Mult.-Valued Logic Soft Comput., vol. 28 (2017), no. 6, 571-590.
      • R.K. Ardekani, B. Davvaz, Classifying fuzzy subgroups and fuzzy normal subgroups of the group D_{2p} × Z_q and finite groups of order n <= 20, J. Intell. Fuzzy Syst., vol. 33 (2017), no. 6, 3615-3627.

  • A note on fundamental group lattices, Bull. Univ. "Transilvania" Braşov, ser. III, vol. 5 (2012), no. 2, 107-112, MR 3035862, ZBL 1324.20032 (pdf), cited by:

      • H.R. Moradi, M. Moradi, An approach to rewritable probability in finite groups, Adv. Nat. Appl. Sciences, vol. 8 (2014), no. 11, 1-4.

  • A note on the lattice of fuzzy subgroups of a finite group, J. Mult.-Valued Logic Soft Comput., vol. 19 (2012), no. 5-6, 537-545, MR 3012373, ZBL 1393.20048 (pdf), cited by:

      • D. Bayrak, S. Yamak, A note on the lattice of TL-submodules of a module, Annals Fuzzy Math. Inform., vol. 10 (2015), no. 2, 323-330.
      • M. Akram, B. Davvaz, F. Feng, Fuzzy soft Lie algebras, J. Mult.-Valued Logic Soft Comput., vol. 24 (2015), no. 5-6, 501-520.

  • A generalization of Menon's identity, J. Number Theory, vol. 132 (2012), no. 11, 2568-2573, MR 2954990, ZBL 1276.11010 (pdf), cited by:

      • L. Tóth, Another generalization of the gcd-sum function, Arab. J. Math., vol. 2 (2013), no. 3, 313-320.
      • C. Miguel, Menon's identity in residually finite Dedekind domains, J. Number Theory, vol. 137 (2014), 179-185.
      • C. Calderón, J.M. Grau, A.M. Oller-Marcén, L. Tóth,Counting invertible sums of squares modulo n and a new generalization of Euler's totient function, Publ. Math. Debrecen, vol. 87 (2015), no. 1-2, 133-145.
      • C. Miguel, A Menon-type identity in residually finite Dedekind domains, J. Number Theory, vol. 164 (2016), 43-51.
      • Y. Li, D. Kim, A Menon-type identity with many tuples of group of units in residually finite Dedekind domains, J. Number Theory, vol. 175 (2017), 42-50.
      • Y. Li, D. Kim, Menon-type identities derived from actions of subgroups of general linear groups, J. Number Theory, vol. 179 (2017), 97-112.
      • L. Tóth, Menon-type identities concerning Dirichlet characters, Int. J. Number Theory, vol. 14 (2018), 1047-1054.
      • Y. Li, X. Hu, D. Kim, A generalization of Menon's identity with Dirichlet characters, 2018.
      • Y. Li, X. Hu, D. Kim, Menon-type identities with additive characters, 2018.
      • Y. Li, X. Hu, D. Kim, A Menon-type identity with multiplicative and additive characters, 2018.
      • M. Chen, S. Hu, Y. Li, On Menon-Sury's identity with several Dirichlet characters, 2018.
      • D. Kim, Y. Li, R. Qiao, A generalization of Menon identity to higher exponent, 2018.

  • Classifying fuzzy subgroups of finite nonabelian groups, Iran. J. Fuzzy Syst., vol. 9 (2012), no. 4, 33-43, MR 3112759, ZBL 1260.20092 (pdf), cited by:

      • O. Ndiweni, B.B. Makamba, Distinct fuzzy subgroups of some dihedral groups, Adv. Fuzzy Sets Syst., vol. 9 (2011), no. 1, 65-91.
      • B. Davvaz, R.K. Ardekani, Counting fuzzy subgroups of a special class of non-abelian groups of order p^3, Ars Combin., vol. 103 (2012), 175-179.
      • F. Saeedi, T. Rezaiyan, Counting fuzzy subgroups of some abelian p-groups of ranks 2, 3 and 4, 2012.
      • B. Davvaz, R.K. Ardekani, Classifying fuzzy subgroups of dicyclic groups, J. Mult.-Valued Logic Soft Comput., vol. 20 (2013), no. 5-6, 507-525.
      • B. Davvaz, R.K. Ardekani, Counting fuzzy subgroups of non-abelian groups of order p^3 and 2^4, J. Mult.-Valued Logic Soft Comput., vol. 21 (2013), no. 5-6, 479-492.
      • H. Darabi, F. Saeedi, M. Farrokhi D.G., The number of fuzzy subgroups of some non-abelian groups, Iran. J. Fuzzy Syst., vol. 10 (2013), no. 6, 101-107.
      • A. Sehgal, S. Sehgal, P.K. Sharma, The number of fuzzy subgroups of a finite dihedral D_{p^mq^n}, Int. J. Fuzzy Math. Archive, vol. 8 (2015), no. 1, 51-57.
      • S.A. Adebisi, The classification of the fuzzy subgroups for a class of finite nilpotent groups, 2015.
      • G. Ali, On fuzzy generalizations of some results in finite group theory, Master Degree Thesis, COMSATS Institute of Information Technology, Lahore, Pakistan, 2016.
      • A. Olayiwola, On explicit formula for calculating the number of fuzzy subgroups of some dihedral groups, 2016
      • B. Davvaz, R.K. Ardekani, Counting fuzzy normal subgroups of non-abelian finite groups, J. Mult.-Valued Logic Soft Comput., vol. 28 (2017), no. 6, 571-590.
      • M.E. Ogiugo, M. Enioluwafe, Classifying a class of the fuzzy subgroups of the alternating groups A_n, IMHOTEP - Math. Proc., vol. 4 (2017), no. 1, 27-33.
      • R.K. Ardekani, B. Davvaz, Classifying fuzzy subgroups and fuzzy normal subgroups of the group D_{2p} × Z_q and finite groups of order n <= 20, J. Intell. Fuzzy Syst., vol. 33 (2017), no. 6, 3615-3627.
      • M.E. Ogiugo, M. Enioluwafe, On the number of fuzzy subgroups of a symmetric group S_5, 2017.
      • U. Shuaib, M. Shaheryar, W. Asghar, On some characterizations of o-fuzzy subgroups, Int. J. Math. Comp. Sci., vol. 13 (2018), no. 2, 119-131.
      • A. Olayiwola, B. Isyaku, The number of distinct fuzzy subgroups of dihedral group of order 60, JQMA, vol. 14 (2018), no. 1, 67-79.

  • Some open problems on a class of finite groups, Int. J. Open Problems Compt. Math., vol. 5 (2012), no. 2, 88-94 (pdf).

  • On an open problem by J.N. Mordeson, K.R. Bhutani and A. Rosenfeld, Critical Review (a publication of Society for Mathematics of Uncertainty), vol. VI (2012), 3-8, ZBL 1275.20072 (pdf).

  • Finite groups determined by an inequality of the orders of their elements, Publ. Math. Debrecen, vol. 80 (2012), no. 3-4, 457-463, MR 2943017, ZBL 1261.20028 (pdf), cited by:

      • S.M. Jafarian Amiri, M. Amiri, Characterization of p-groups by sum of the element orders, Publ. Math. Debrecen, vol. 86 (2015), no. 1-2, 31-37.
      • H. Xue, On a special class of finite 3-groups, J. Southwest China Normal Univ. (Natural Sci. Ed.), vol. 2015, no. 8, 7-9.
      • W. Shi, H. Lv, A note of CP_2-groups, Comm. Math. Stat., vol. 5 (2017), no. 4, 447-451.

  • Solitary quotients of finite groups, Cent. Eur. J. Math., vol. 10 (2012), no. 2, 740-747, MR 2886569, ZBL 1257.20024 (pdf); see also Erratum to "Solitary quotients of finite groups", Cent. Eur. J. Math., vol. 11 (2013), no. 2, 376-377, MR 3000653, ZBL 1260.20031 (pdf), cited by:

      • O.L. Castro, Solitary subgroups of finite groups, Ph.D. Thesis, Polytechnic University of Valencia, 2015.
      • R. Esteban-Romero, O. Liriano, A note on solitary subgroups of finite groups, Comm. Algebra, vol. 44 (2016), no. 7, 2945-2952.

  • A note on subgroup coverings of finite groups, Sci. An. Univ. Timişoara, ser. Math.-Inform., tome XLIX (2011), fasc. 2, 129-135, MR 2949162, ZBL 1260.20041 (pdf).

  • Finite groups determined by an inequality of the orders of their normal subgroups, Sci. An. Univ. "Al. I. Cuza" Iaşi, ser. Math., tome LVII (2011), fasc. 2, 229-238, MR 2933379, ZBL 1240.20035 (pdf), cited by:

      • S.J. Baishya, A.K. Das, Harmonic numbers and finite groups, Rend. Semin. Mat. Univ. Padova, vol. 132 (2014), 33-43.
      • S.J. Baishya, Revisiting the Leinster groups, C. R. Math. Acad. Sci. Paris, vol. 352 (2014), no. 1, 1-6.

  • Addendum to "Subgroup commutativity degrees of finite groups", J. Algebra, vol. 337 (2011), no. 1, 363-368, MR 2796081, ZBL 1233.20023 (pdf), cited by:

      • F.G. Russo, Considerations on the subgroup commutativity degree and related notions, 2011.
      • M. Farrokhi D.G., Subgroup commutativity degree of PSL(2, p^n), The Fourth Group Theory Conference of Iran, Payam Noor University of Isfahan, Iran, 2012.
      • F. Saeedi, M. Farrokhi D.G., Subgroup permutability degree of PSL(2, p^n), Glasgow Math. J., vol. 55 (2013), no. 3, 581-590.
      • S. Aivazidis, The subgroup permutability degree of projective special linear groups over fields of even characteristic, J. Group Theory, vol. 16 (2013), no. 3, 383-396.
      • S. Aivazidis, On the subgroup permutability degree of the simple Suzuki groups, Monatsh. Math., vol. 176 (2015), no. 3, 335-358.
      • S. Aivazidis, On the subgroup permutability degree of some finite simple groups, Ph. D. Thesis, Queen Mary University, London, UK, 2015.
      • H.Y. Xuang, H.M. Bao, X.Y. Shi, The influence of subgroup commutativity degrees on the structure of finite groups, J. Math., vol. 35 (2015), no. 3, 743-746.
      • D.E. Otera, F.G. Russo, Permutability degrees of finite groups, Filomat, vol. 30 (2016), no. 8, 2165-2175.
      • F.G. Russo, Strong subgroup commutativity degree and some recent problems on the commuting probabilities of elements and subgroups, Quaest. Math., vol. 39 (2016), no. 8, 1019-1036.
      • Y. Wang, G. Peng, F. Zhou, Factorization number of a class of generalized extraspecial p-groups, Henan Sci., vol. 34 (2016), no. 12, 1949-1955.
      • M.S. Lazorec, Relative cyclic subgroup commutativity degrees of finite groups, 2018.

  • Pseudocomplementation in (normal) subgroup lattices (with T. De Medts), Comm. Algebra, vol. 39 (2011), no. 1, 247-262, MR 2770893, ZBL 1218.20014 (pdf), cited by:

      • D. Bayrak, S. Yamak, Distributivity and pseudocomplementation of lattices of generalized L-subgroups, Int. J. of Algebra and Statistics, vol. 5 (2016), no. 2, 107-114.

  • On the total number of principal series of a finite abelian group (with L. Bentea), Sci. An. Univ. "Ovidius" Constanţa, ser. Math., vol. XVIII (2010), fasc. 2, 41-52, MR 2785793, ZBL 1224.05501 (pdf).

  • An arithmetic method of counting the subgroups of a finite abelian group, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), tome 53/101 (2010), no. 4, 373-386, MR 2777681, ZBL 1231.20051 (pdf), cited by:

      • L. Tóth, Menon's identity and arithmetical sums representing functions of several variables, Rend. Sem. Mat. Univ. Politec. Torino, vol. 69 (2011), no. 1, 97-110.
      • D.E. Otera, F.G. Russo, Subgroup S-commutativity degree of finite groups, Bull. Belg. Math. Soc. Simon Stevin, vol. 19 (2012), no. 2, 373-382.
      • L. Tóth, On the number of cyclic subgroups of a finite abelian group, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), tome 55/103 (2012), no. 4, 423-428.
      • J. Bourgain, E. Fuchs, On representation of integers by binary quadratic forms, Int. Math. Res. Notices, vol. 2012, no. 24, 5505-5553.
      • C. Segovia, The classifying space of the 1+1 dimensional G-cobordism category, 2012.
      • F. Saeedi, T. Rezaiyan, Counting fuzzy subgroups of some abelian p-groups of ranks 2, 3 and 4, 2012.
      • M. Hampejs, L. Tóth, On the subgroups of finite abelian groups of rank three, Annales Universitatis Scientiarum Budapestinensis, Sect. Comp., vol. 39 (2013), 111-124.
      • A. Sehgal, Y. Kumar, On the number subgroups of finite abelian group Z_m × Z_n, Int. J. Algebra, vol. 7 (2013), no. 19, 915-923.
      • M.A. Bărăscu, Gradings on matrix algebras, Ph.D. Thesis, Faculty of Mathematics and Informatics, University of Bucharest, 2013.
      • C. Wiesmeyr, Construction of frames by discretization of phase space, Ph.D. Thesis, University of Wien, Austria, 2013.
      • N. Holighaus, Theory and implementation of adaptive time-frequency, Ph.D. Thesis, University of Wien, Austria, 2013.
      • H.M. Rodrigues, P.L.D.A. Rodrigues, J.E. Sarlabous, Algebraic norm type tori as linear codes, Proceedings of COMPUMAT, Havana, Cuba, 2013.
      • L. Tóth, Subgroups of finite abelian groups having rank two via Goursat's lemma, Tatra Mt. Math. Publ., vol. 59 (2014), 93-103.
      • W.G. Nowak, L. Tóth, On the average number of subgroups of the group Z_m × Z_n, Int. J. Number Theory, vol. 10 (2014), 363-374.
      • C.Y. Chew, A.Y.M. Chin, C.S. Lim, Sum of element orders of finite abelian groups, Proceedings of The 3rd International Conference on Computer Science and Computational Mathematics (ICCSCM), Langkawi, Malaysia, 2014, 129-132.
      • M. Hampejs, N. Holighaus, L. Tóth, C. Wiesmeyr, Representing and counting the subgroups of the group Z_m × Z_n, J. Numbers, vol. 2014, article ID 491428.
      • A. Sehgal, S. Sehgal, P.K. Sharma, The number of subgroups of a finite abelian p-group of rank two, Journal for Algebra and Number Theory Academia, vol. 5 (2015), no. 1, 23-31.
      • C.Y. Chew, A.Y.M. Chin, C.S. Lim, The number of subgroups of a finite abelian p-group of rank 4, Proceedings of AIP Conference, Selangor, Malaysia, 2015, doi: 10.1063/1.4932475.
      • C.Y. Chew, A.Y.M. Chin, C.S. Lim, The number of subgroups of a direct product of cyclic p-groups, 2015.
      • A. Sehgal, S. Sehgal, P.K. Sharma, The number of automorphisms of a finite abelian group of rank two, J. Discrete Math. Sciences and Cryptography, vol. 19 (2016), no. 1, 163-171.
      • F. Zhou, F. Zhou, H. Liu, The generalized commutativity degree of finite groups, Chinese Ann. Math., Ser. A, vol. 37 (2016), no. 2, 127-136.
      • A. Sehgal, S. Sehgal, P.K. Sharma, The number of subgroups of a finite abelian p-group of rank three, J. Calcutta Math. Soc., vol. 12 (2016), no. 2, 137-152.
      • H.M. Rodrigues, P.L.D.A. Rodrigues, J.E. Sarlabous, Algebraic norm type tori as linear codes defined over abelian Galois extension Toro algebraico de Tipo Norma sobre una extensión Abeliana de Galois, 2016.
      • L. Tóth, The number of subgroups of the group Z_m × Z_n × Z_r × Z_s, 2016.
      • I.K. Appiah, B.B. Makamba, Counting distinct fuzzy subgroups of some rank-3 abelian groups, Iran. J. Fuzzy Syst., vol. 14 (2017), no. 1, 163-181.
      • A. Sehgal, S. Sehgal, P.K. Sharma, M. Jakhar, Counting subgroups of a non-abelian p-group Z_{p^n} × Z_p, Int. J. Pure Appl. Math., vol. 113 (2017), no. 10, 37-46.
      • O.O. Oluwafunmilayo, M. Enioluwafe, On counting subgroups for a class of finite non-abelian p-groups and related problems, IMHOTEP - Math. Proc., vol. 4 (2017), no. 1, 34-43.
      • C.Y. Chew, A.Y.M. Chin, C.S. Lim, A recursive formula for the sum of element orders of finite abelian groups, Results Math., vol. 72 (2017), no. 4, 1897-1905.
      • L. Tóth, W. Zhai, On the error term concerning the number of subgroups of the groups Z_m × Z_n with m, n <= x, Acta Arithm., vol. 183 (2018), no. 3, 285-299.
      • L. Tóth, Counting subrings of the ring Z_m × Z_n, 2018.
      • B. Cisneros, C. Segovia, An approximation for the number of subgroups, 2018.
      • F. Admasu, A. Sehgal, Counting subgroups of fixed order in finite abelian groups, 2018.

  • A characterization of generalized quaternion 2-groups, C. R. Math. Acad. Sci. Paris, vol. 348 (2010), no. 13-14, 731-733, MR 2671150, ZBL 1205.20024 (pdf), cited by:

      • Y. Chen, G. Chen, A note on a characterization of generalized quaternion 2-groups, C. R. Math. Acad. Sci. Paris, vol. 352 (2014), no. 6, 459-461.

  • On the poset of subhypergroups of a hypergroup, Int. J. Open Problems Compt. Math., vol. 3 (2010), no. 2, 115-122, MR 2669105, ZBL 1293.20065 (pdf), cited by:

      • A.D. Lokhande, A. Gangadhara, On poset of subhypergroup and hyper lattices, Int. J. Contemp. Math. Sciences, vol. 8 (2013), no. 12, 559-564.
      • A.D. Lokhande, A. Gangadhara, A note on distributivity of a poset of subhypergroup of a hypergroup, IJRITCC, vol. 2 (2014), no. 4, 861-866.
      • R. Kellil, On the set of subhypergroup of certain canonical hypergroups C(n), JP J. Algebra Number Theory Appl., vol. 38 (2016), no. 2, 185-200.
      • D. Bayrak, S. Yamak, S. Yilmaz, The lattice structure of subhypergroups of a hypergroup, Proceedings of AHA 2017, Istambul, Turkey.
      • D. Bayrak, S. Yamak, An answer to "On the poset of subhypergroups of a hypergroup", 2018.

  • Hyperstructures associated to E-lattices, Gen. Math., vol. 17 (2009), no. 3, 15-38, MR 2656752, ZBL 1199.06026 (pdf).

  • Counting maximal chains of subgroups of finite nilpotent groups (with M. Ştefănescu), Carpathian J. Math., vol. 25 (2009), no. 1, 119-127, MR 2523045, ZBL 1178.20016 (pdf), cited by:

      • B. Davvaz, R.K. Ardekani, Counting fuzzy normal subgroups of non-abelian finite groups, J. Mult.-Valued Logic Soft Comput., vol. 28 (2017), no. 6, 571-590.

  • Subgroup commutativity degrees of finite groups, J. Algebra, vol. 321 (2009), no. 9, 2508-2520, MR 2504488, ZBL 1196.20024 (pdf), cited by:

      • A. Castelaz, Commutativity degree of finite groups, Master Degree Thesis, Wake Forest University, Winston-Salem, North Carolina, USA, 2010.
      • A.M. Alghamdi, D.E. Otera, F.G. Russo, A survey on some recent investigations of probability in group theory, Boll. Mat. Pura Appl., vol. 3 (2010), 87-96.
      • F. Saeedi, M. Farrokhi D.G., Factorization numbers of some finite groups, Proceedings of The First Biennial International Group Theory Conference, Malaysia, 2011.
      • M. Farrokhi D.G., Factorization numbers of finite abelian groups, Ferdowsi University of Mashhad, Tehran, Iran, 2011.
      • V.A. Chupordya, On some numerical characteristics of permutability subgroups of finite groups, Proceedings of The 8th International Algebraic Conference in Ukraine, 2011.
      • M.A.C. Valadão, O grau de comutatividade de subgrupos de um grupo finito, Master Degree Thesis, Universidade de Brasilia, Departamento de Matemática, Brasilia, 2011.
      • F.G. Russo, Considerations on the subgroup commutativity degree and related notions, 2011.
      • F. Saeedi, M. Farrokhi D.G., Factorization numbers of some finite groups, Glasgow Math. J., vol. 54 (2012), no. 2, 345-354.
      • M. Farrokhi D.G., Subgroup commutativity degree of PSL(2, p^n), The Fourth Group Theory Conference of Iran, Payam Noor University of Isfahan, Iran, 2012.
      • D.E. Otera, F.G. Russo, Subgroup S-commutativity degree of finite groups, Bull. Belg. Math. Soc. Simon Stevin, vol. 19 (2012), no. 2, 373-382.
      • M. Farrokhi D.G., Factorization numbers of finite abelian groups, Int. J. Group Theory, vol. 2 (2013), no. 2, 1-8.
      • F. Saeedi, M. Farrokhi D.G., Subgroup permutability degree of PSL(2, p^n), Glasgow Math. J., vol. 55 (2013), no. 3, 581-590.
      • S. Aivazidis, The subgroup permutability degree of projective special linear groups over fields of even characteristic, J. Group Theory, vol. 16 (2013), no. 3, 383-396.
      • A. Gholami, M.R. Mollaei, Some inequalities of subgroup commutativity degree of finite groups, Southeast Asian Bull. Math., vol. 37 (2013), no. 6, 845-858.
      • M. Farrokhi D.G., On the probability that a group satisfies a law, Proceedings of RIMS Workshop, Japan, 2014.
      • S. Aivazidis, On the subgroup permutability degree of the simple Suzuki groups, Monatsh. Math., vol. 176 (2015), no. 3, 335-358.
      • S. Aivazidis, On the subgroup permutability degree of some finite simple groups, Ph. D. Thesis, Queen Mary University, London, UK, 2015.
      • H.Y. Xuang, H.M. Bao, X.Y. Shi, The influence of subgroup commutativity degrees on the structure of finite groups, J. Math., vol. 35 (2015), no. 3, 743-746.
      • R. Rajkumar, P. Devi, Permutability graphs of subgroups of some finite non-abelian groups, Discrete Math. Alg. Appl., vol. 8 (2016), no. 3, article ID 1650047.
      • D.E. Otera, F.G. Russo, Permutability degrees of finite groups, Filomat, vol. 30 (2016), no. 8, 2165-2175.
      • F.G. Russo, Strong subgroup commutativity degree and some recent problems on the commuting probabilities of elements and subgroups, Quaest. Math., vol. 39 (2016), no. 8, 1019-1036.
      • F. Zhou, F. Zhou, H. Liu, The generalized commutativity degree of finite groups, Chinese Ann. Math., Ser. A, vol. 37 (2016), no. 2, 127-136.
      • Y. Wang, G. Peng, F. Zhou, Factorization number of a class of generalized extraspecial p-groups, Henan Sci., vol. 34 (2016), no. 12, 1949-1955.
      • X. Li, F. Zhou, The generalized commutativity degree of 4-letters symmetric group S_4, Pure Math., vol. 7 (2017), no. 3, 163-167.
      • N. Zaid, N.H. Sarmin, H. Rahmat, On the generalized conjugacy class graph of some dihedral groups, Malays. J. Fund. Appl. Sciences, vol. 13 (2017), no. 2, 36-39.
      • D.E. Otera, F.G. Russo, Permutability degrees of some metacyclic groups, 2017.
      • M.S. Lazorec, Probabilistic aspects of ZM-groups, 2017.
      • N. Zaid, N.H. Sarmin, S.N. Amzee, A variant of commutativity degree and its generalized conjugacy class graph, Adv. Sci. Letters, vol. 24 (2018), no. 6, 4429-4432.
      • N. Zaid, N.H. Sarmin, S.N. Amzee, H. Rahmat, On the orbit of some metabelian groups of order 24 and its applications, Proc. AIP Conference 1974, 030004 (2018), doi: 10.1063/1.5041648.
      • A. Javadi, F. Fayazi, A. Gholami, Some new results related to subgroup commutativity degrees and p-commutativity degrees of finite groups, Ital. J. Pure Appl. Math., vol. 39 (2018), 530-543.
      • M.S. Lazorec, Relative cyclic subgroup commutativity degrees of finite groups, 2018.

  • Distributivity in lattices of fuzzy subgroups, Inform. Sci., vol. 179 (2009), no. 8, 1163-1168, MR 2502093, ZBL 1160.20063 (pdf), cited by:

      • B. Davvaz, M. Fathi, A.R. Salleh, Fuzzy hyperrings (Hv-rings) based on fuzzy universal sets, Inform. Sci., vol. 180 (2010), no. 16, 3021-3032.
      • B.B. Makamba, V. Murali, Preferential normal fuzzy subgroups, Inform. Sci., vol. 180 (2010), no. 24, 5125-5129.
      • Ath. Kehagias, Some remarks on the lattice of fuzzy intervals, Inform. Sci., vol. 181 (2011), no. 10, 1863-1873.
      • J. Recasens, Permutable indistinguishability operators, perfect fuzzy groups and fuzzy subgroups, Inform. Sci., vol. 196 (2012), 129-142.
      • F.B. Bergamaschi, R.H.N. Santiago, On properties of fuzzy ideals, Proceedings of IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), Edmonton, Canada, 2013, 62-67, doi: 10.1109/IFSA-NAFIPS.2013.6608376.
      • D. Bayrak, S. Yamak, The lattice of generalized normal L-subgroups, J. Intell. Fuzzy Syst., vol. 27 (2014), no. 3, 1143-1152.
      • D. Bayrak, S. Yamak, The lattice of generalized L-subgroups, Proceedings of The International Conference on Algebra and Number Theory, Samsun, Turcia, 2014.
      • D. Bayrak, S. Yamak, A note on the lattice of TL-submodules of a module, Annals Fuzzy Math. Inform., vol. 10 (2015), no. 2, 323-330.
      • F.B. Bergamaschi, Strong primeness in fuzzy environment, Ph. D. Thesis, Federal University of Rio Grande, Brazil, 2015.
      • D. Bayrak, S. Yamak, Distributivity and pseudocomplementation of lattices of generalized L-subgroups, Int. J. of Algebra and Statistics, vol. 5 (2016), no. 2, 107-114.
      • D. Bayrak, S. Yamak, A note on the lattice of fuzzy hyperideals of a hyperring, Afrika Mat., vol 28 (2017), no. 7-8, 1185-1192.
      • N. Ajmal, N. Sultana, I. Jahan, A characterization of generalized cyclic groups, 2018.

  • The number of fuzzy subgroups of finite cyclic groups and Delannoy numbers, European J. Combin., vol. 30 (2009), no. 1, 283-287, MR 2460233 (2009i:20135), ZBL 1161.20059 (pdf), cited by:

      • B.B. Makamba, V. Murali, Preferential normal fuzzy subgroups, Inform. Sci., vol. 180 (2010), no. 24, 5125-5129.
      • Z. Wang, L. Shu, Several equivalent conditions of fuzzy subgroups of some groups, Fuzzy Inform. Engineering, Adv. Soft Comput., Springer, vol. 78 (2010), 41-47, doi: 10.1007/978-3-642-14880-4_5.
      • R. Sulaiman, Abd. G. Ahmad, The number of fuzzy subgroups of finite cyclic groups, Int. Math. Forum, vol. 6 (2011), no. 20, 987-994.
      • R. Sulaiman, Abd. G. Ahmad, The number of fuzzy subgroups of a group defined by a presentation, Int. J. Algebra, vol. 5 (2011), no. 8, 375-382.
      • J.S. Caughman, C.L. Dunn, N.A. Neudauer, C.L. Starr, Counting lattice chains and Delannoy paths in higher dimensions, Discrete Math., vol. 311 (2011), no. 16, 1803-1812.
      • J.M. Oh, The number of chains of subgroups of a finite cyclic group, European J. Combin., vol. 33 (2012), no. 2, 259-266.
      • R. Sulaiman, Constructing fuzzy subgroups of symmetric groups S_4, Int. J. Algebra, vol. 6 (2012), no. 1, 23-28.
      • R. Sulaiman, Fuzzy subgroups computation of finite group by using their lattices, Int. J. Pure Appl. Math., vol. 78 (2012), no. 4, 479-489.
      • B. Davvaz, R.K. Ardekani, Counting fuzzy subgroups of a special class of non-abelian groups of order p^3, Ars Combin., vol. 103 (2012), 175-179.
      • J. Recasens, Permutable indistinguishability operators, perfect fuzzy groups and fuzzy subgroups, Inform. Sci., vol. 196 (2012), 129-142.
      • J.M. Oh, The number of chains of subgroups of a finite dihedral group, 2012.
      • J.M. Oh, Enumeration of chains of subgroups in the lattice of subgroups of the dihedral group, 2012.
      • B. Davvaz, R.K. Ardekani, Classifying fuzzy subgroups of dicyclic groups, J. Mult.-Valued Logic Soft Comput., vol. 20 (2013), no. 5-6, 507-525.
      • H. Darabi, M. Imanparast, Counting number of fuzzy subgroups of some of dihedral groups, Int. J. Pure Appl. Math., vol. 85 (2013), no. 3, 563-575.
      • M. Imanparast, H. Darabi, A recursive formula for the number of fuzzy subgroups of finite cyclic groups, J. Adv. Comput. Research, vol. 4 (2013), no. 1, 55-63.
      • B. Davvaz, R.K. Ardekani, Counting fuzzy subgroups of non-abelian groups of order p^3 and 2^4, J. Mult.-Valued Logic Soft Comput., vol. 21 (2013), no. 5-6, 479-492.
      • H. Darabi, F. Saeedi, M. Farrokhi D.G., The number of fuzzy subgroups of some non-abelian groups, Iran. J. Fuzzy Syst., vol. 10 (2013), no. 6, 101-107.
      • A. Sehgal, P.K. Sharma, On the number of fuzzy subgroups of a finite cyclic group, Proceeding of National Conference on Advances in Mathematics and its Applications, India, 2013, 293-298.
      • A.M. Ibraheem, Counting fuzzy subgroups of Z_2^n by lattice subgroups, Eng. & Tech. Journal, vol. 32 (2014), no. 2, 360-369.
      • R. Sulaiman, B.P. Prawoto, Computing the number of fuzzy subgroups by expansion method, Int. Electron. J. Pure Appl. Math., vol. 8 (2014), no. 4, 53-58.
      • S.A. Adebisi, The classification of the fuzzy subgroups for a class of finite nilpotent groups, 2015.
      • R. Sulaiman, The symmetry property for the number of fuzzy subgroups of rectangle groups, Int. Math. Forum, vol. 11 (2016), no. 2, 55-60.
      • J. Engbers, C. Stocker, Two combinatorial proofs of identities involving powers of binomial coefficients, Integers, vol. 16 (2016), A58.
      • B. Davvaz, R.K. Ardekani, Counting fuzzy normal subgroups of non-abelian finite groups, J. Mult.-Valued Logic Soft Comput., vol. 28 (2017), no. 6, 571-590.
      • A. Sehgal, M. Jakhar, The number of fuzzy subgroups for finite abelian p-group of rank three, Adv. Fuzzy Math., vol. 12 (2017), no. 4, 1035-1045.
      • R.K. Ardekani, B. Davvaz, Classifying fuzzy subgroups and fuzzy normal subgroups of the group D_{2p} × Z_q and finite groups of order n <= 20, J. Intell. Fuzzy Syst., vol. 33 (2017), no. 6, 3615-3627.
      • J. Engbers, C. Stocker, Combinatorial proofs of identities of Alzer and Prodinger and some generalizations, Integers, vol. 18 (2018), A49.
      • M. Benoumhani, A. Jaballah, Chains in lattice of mappings and finite fuzzy topological spaces, J. Combin. Theory, Series A, vol. 161 (2019), 99-111.

  • Finite groups determined by an inequality of the orders of their subgroups (with T. De Medts), Bull. Belg. Math. Soc. Simon Stevin, vol. 15 (2008), no. 4, 699-704, MR 2475493 (2009j:20033), ZBL 1166.20017 (pdf), cited by:

      • A. Maróti, Perfect numbers and finite groups, University of Padova, Padova, Italy, 2011.
      • T. De Medts, A. Maróti, Perfect numbers and finite groups, Rend. Semin. Mat. Univ. Padova, vol. 129 (2013), 17-33.
      • H. Khosravi, H. Golmakani, Modeling of some concepts from number theory to group theory, Int. Res. J. Pure Algebra, vol. 3 (2013), no. 8, 282-285.
      • S.J. Baishya, A.K. Das, Harmonic numbers and finite groups, Rend. Semin. Mat. Univ. Padova, vol. 132 (2014), 33-43.
      • S.J. Baishya, Revisiting the Leinster groups, C. R. Math. Acad. Sci. Paris, vol. 352 (2014), no. 1, 1-6.
      • H. Khosravi, On the perfect and superperfect groups, Int. J. Math. Archive, vol. 5 (2014), no. 7, 151-154.
      • H. Khosravi, E. Faryad, Amicable numbers and groups, Int. Research J. Pure Algebra, vol. 4 (2014), no. 10, 593-598.
      • H. Khosravi, E. Faryad, Amicable numbers and groups, II, Int. J. Math. Trends Tech., vol. 14 (2014), no. 1, 40-45.
      • M. Maj, Recognize some structural properties of a finite group from the orders of its elements, Cemal Koç - Algebra Days, Middle East Technical University of Ankara, Turkey, 2016.
      • M. Garonzi, M. Patassini, Inequalities detecting structural properties of a finite group, Comm. Algebra, vol. 45 (2017), no. 2, 677-687.
      • H. Khosravi, H. Golmakani, The results of the new classification of finite groups, Adv. Appl. Math. Sci., vol. 16 (2017), no. 7, 235-243.
      • M. Herzog, P. Longobardi, M. Maj, Properties of finite and periodic groups determined by their element orders, Group Theory and Computation, Springer, 2018, 59-90.

  • An E-lattice structure associated to some classes of finite groups, Fixed Point Theory, vol. 9 (2008), no. 2, 575-583, MR 2464137 (2009j:06011), ZBL 1176.06008 (pdf).

  • A note on the number of fuzzy subgroups of finite groups (with L. Bentea), Sci. An. Univ. "Al. I. Cuza" Iaşi, ser. Math., tome LIV (2008), fasc. 1, 209-220, MR 2429116 (2009f:20103), ZBL 1158.20039 (pdf), cited by:

      • J.M. Oh, Fuzzy subgroups of the direct product of a generalized quaternion group and a cyclic group of any odd order, Iran. J. Fuzzy Syst., vol. 10 (2013), no. 5, 97-112.
      • N. Kumar, A. Sehgal, S. Sehgal, P.K. Sharma, Quadratic form of subgroups of a finite abelian p-group of rank two, Ann. Pure Appl. Math., vol. 10 (2015), no. 2, 165-167.
      • S.A. Adebisi, The classification of the fuzzy subgroups for a class of finite nilpotent groups, 2015.
      • A. Sehgal, S. Sehgal, M. Jakhar, P.K. Sharma, Quadratic form of automorphism of a finite abelian p-group of rank two, Adv. Algebra, vol. 9 (2016), no. 1, 17-21.
      • B. Davvaz, R.K. Ardekani, Counting fuzzy normal subgroups of non-abelian finite groups, J. Mult.-Valued Logic Soft Comput., vol. 28 (2017), no. 6, 571-590.
      • R.K. Ardekani, B. Davvaz, Classifying fuzzy subgroups and fuzzy normal subgroups of the group D_{2p} × Z_q and finite groups of order n <= 20, J. Intell. Fuzzy Syst., vol. 33 (2017), no. 6, 3615-3627.

  • Counting subgroups for a class of finite nonabelian p-groups, Sci. An. Univ. Timişoara, ser. Math.-Inform., tome XLVI (2008), fasc. 1, 147-152, MR 2791473, ZBL 1199.20020 (pdf), cited by:

      • M. Enioluwafe, Counting subgroups of finite nonmetacyclic 2-groups having no elementary abelian subgroup of order 8, IOSR J. Math., vol. 10 (2014), no. 5, 31-32.
      • C. Shao, Q. Jiang, Finite groups whose set of numbers of subgroups of possible order has exactly 2 elements, Czech. Math. J., vol. 64 (2014), no. 3, 827-831.
      • M. Enioluwafe, Counting subgroups of nonmetacyclic groups of type D_{2^{n-1}} × C_2, n >= 3, IMHOTEP - Math. Proc., vol. 2 (2015), no. 1, 25-27.
      • S.M. Jafarian Amiri, H. Madadi, H. Rostami, On 10-centralizer groups, 2015.
      • O.O. Oluwafunmilayo, M. Enioluwafe, On counting subgroups for a class of finite non-abelian p-groups and related problems, IMHOTEP - Math. Proc., vol. 4 (2017), no. 1, 34-43.

  • On the number of fuzzy subgroups of finite abelian groups (with L. Bentea), Fuzzy Sets and Systems, vol. 159 (2008), no. 9, 1084-1096, MR 2418786 (2009c:20127), ZBL 1171.20043 (pdf), cited by:

      • Ho. Naraghi, Ha. Naraghi, A. Iranmanesh, On fuzzy subgroups of finite p-groups, AAA76-76th. Workshop on General Algebra, Linz, Austria, 2008.
      • R. Sulaiman, Abd. G. Ahmad, Counting fuzzy subgroups of symmetric groups S_2, S_3 and alternating group A_4, JQMA, vol. 6 (2010), no. 1, 57-63.
      • Z. Wang, L. Shu, Several equivalent conditions of fuzzy subgroups of some groups, Fuzzy Inform. Engineering, Adv. Soft Comput., Springer, vol. 78 (2010), 41-47, doi: 10.1007/978-3-642-14880-4_5.
      • R. Sulaiman, Relasi ekuivalensi pada subgrup fuzzy, J. Mat. Stat., vol. 10 (2010), no. 2, 152-159.
      • A. Jaballah, F.B. Saidi, Length of maximal chains and number of fuzzy ideals in commutative rings, J. Fuzzy Math., vol. 18 (2010), no. 3, 743-750.
      • R. Sulaiman, Abd. G. Ahmad, The number of fuzzy subgroups of finite cyclic groups, Int. Math. Forum, vol. 6 (2011), no. 20, 987-994.
      • R. Sulaiman, Abd. G. Ahmad, The number of fuzzy subgroups of a group defined by a presentation, Int. J. Algebra, vol. 5 (2011), no. 8, 375-382.
      • S. Jia, Y. Chen, J. Liu, Y. Jiang, On the number of fuzzy subgroups of finite abelian p-groups with type (p^n, p^m), Proceedings of The 3rd International Conference on Computer Research and Development (ICCRD), China, vol. 4 (2011), 62-64, doi: 10.1109/ICCRD.2011.5763854.
      • O. Ndiweni, B.B. Makamba, Distinct fuzzy subgroups of some dihedral groups, Adv. Fuzzy Sets Syst., vol. 9 (2011), no. 1, 65-91.
      • A. Iranmanesh, H. Naraghi, The connections between some equivalence relations on fuzzy subgroups, Iran J. Fuzzy Syst., vol. 8 (2011), no. 5, 69-80.
      • J.M. Oh, The number of chains of subgroups of a finite cyclic group, European J. Combin., vol. 33 (2012), no. 2, 259-266.
      • R. Sulaiman, Constructing fuzzy subgroups of symmetric groups S_4, Int. J. Algebra, vol. 6 (2012), no. 1, 23-28.
      • R. Sulaiman, Subgroups lattice of symmetric group S_4, Int. J. Algebra, vol. 6 (2012), no. 1, 29-35.
      • R. Sulaiman, Fuzzy subgroups computation of finite group by using their lattices, Int. J. Pure Appl. Math., vol. 78 (2012), no. 4, 479-489.
      • Y. Chen, Y. Jiang, S. Jia, On the number of fuzzy subgroups of finite abelian p-groups, Int. J. Algebra, vol. 6 (2012), no. 5, 233-238.
      • M.O. Massa'deh, Some structure properties of anti L-Q-fuzzy and normal fuzzy subgroups, Asian J. Algebra, vol. 5 (2012), no. 1, 21-27.
      • B. Davvaz, R.K. Ardekani, Counting fuzzy subgroups of a special class of non-abelian groups of order p^3, Ars Combin., vol. 103 (2012), 175-179.
      • Ha. Naraghi, Ho. Naraghi, The determination of the number of distinct fuzzy subgroups of the group Z_{p_1p_2...p_n} and the dihedral group D_{2p_1p_2...p_n}, IJMA, vol. 3 (2012), no. 4, 1712-1717.
      • O. Ndiweni, B.B. Makamba, Distinct fuzzy subgroups of the dihedral group D_{p^n}, Pioneer J. Math. Mathematical Sci., vol. 4 (2012), no. 2, 231 - 244.
      • O. Ndiweni, B.B. Makamba, Classification of fuzzy subgroups of a dihedral group of order 2pqr for distinct primes p, q and r, Int. J. Math. Sci. Eng. Appl., vol. 6 (2012), no. 4, 159-174.
      • B. Humera, Z. Raza, On subgroups lattice of quasidihedral group, Int. J. Algebra, vol. 6 (2012), no. 25, 1221-1225.
      • J.M. Oh, Y. Kim, K.W. Hwang, The number of chains of subgroups in the lattice of subgroups of the dicyclic group, Discrete Dynamics in Nature and Society, vol. 2012, article ID760246, doi:10.1155/2012/760246.
      • N. Doda, P.K. Sharma, Different possibilities of fuzzy subgroups of a cyclic group, I, Adv. Fuzzy Sets Syst., vol. 12 (2012), no. 2, 101-109.
      • M.O. Massa'deh, On M-fuzzy cosets, M-conjugate of M-upper fuzzy subgroups over M-groups, Global J. Pure Applied Math., vol. 8 (2012), no. 3, 295-303.
      • J.M. Oh, The number of chains of subgroups of a finite dihedral group, 2012.
      • J.M. Oh, Enumeration of chains of subgroups in the lattice of subgroups of the dihedral group, 2012.
      • F. Saeedi, T. Rezaiyan, Counting fuzzy subgroups of some abelian p-groups of ranks 2, 3 and 4, 2012.
      • B. Humera, Z. Raza, On fuzzy subgroups of finite abelian groups, Int. Math. Forum, vol. 8 (2013), no. 4, 181-190.
      • B. Davvaz, R.K. Ardekani, Classifying fuzzy subgroups of dicyclic groups, J. Mult.-Valued Logic Soft Comput., vol. 20 (2013), no. 5-6, 507-525.
      • H. Darabi, M. Imanparast, Counting number of fuzzy subgroups of some of dihedral groups, Int. J. Pure Appl. Math., vol. 85 (2013), no. 3, 563-575.
      • M.O. Massa'deh, Structure properties of an intuitionistic anti fuzzy M-subgroups, J. Appl. Compt. Sci. Math., vol. 14 (2013), no. 7, 42-44.
      • M. Imanparast, H. Darabi, A recursive formula for the number of fuzzy subgroups of finite cyclic groups, J. Adv. Comput. Research, vol. 4 (2013), no. 1, 55-63.
      • J.M. Oh, Fuzzy subgroups of the direct product of a generalized quaternion group and a cyclic group of any odd order, Iran. J. Fuzzy Syst., vol. 10 (2013), no. 5, 97-112.
      • B. Davvaz, R.K. Ardekani, Counting fuzzy subgroups of non-abelian groups of order p^3 and 2^4, J. Mult.-Valued Logic Soft Comput., vol. 21 (2013), no. 5-6, 479-492.
      • H. Darabi, F. Saeedi, M. Farrokhi D.G., The number of fuzzy subgroups of some non-abelian groups, Iran. J. Fuzzy Syst., vol. 10 (2013), no. 6, 101-107.
      • J.M. Oh, An explicit formula for the number of fuzzy subgroups of a finite abelian p-group of rank two, Iran. J. Fuzzy Syst., vol. 10 (2013), no. 6, 125-135.
      • N. Doda, P.K. Sharma, Counting the number of intuitionistic fuzzy subgroups of finite abelian groups of different order, NIFS, vol. 19 (2013), no. 4, 42-47.
      • A. Sehgal, P.K. Sharma, On the number of fuzzy subgroups of a finite cyclic group, Proceeding of National Conference on Advances in Mathematics and its Applications, India, 2013, 293-298.
      • E. Saltürk, The number of fuzzy subgroups and codes with some applications, Ph. D. Thesis, Yildiz Technical University, Istanbul, Turkey, 2013.
      • R. Sulaiman, B.P. Prawoto, The number of fuzzy subgroups of rectangle groups, Int. J. Algebra, vol. 8 (2014), no. 1, 17-23.
      • P. Pandiammal, A study on intuitionistic anti L-fuzzy M-subgroups, IJCOT, vol. 5 (2014), 43-52.
      • Y. Shabanpour, S. Sedghi, Reconsider on the number of fuzzy subgroups of finite abelian p-groups, MAGNT Research Report, vol. 2 (2014), no. 7, 50-56.
      • B.B. Makamba, O. Ndiweni, Distinct fuzzy subgroups of a dihedral group of order 2pqrs for distinct primes p, q, r and s, Iran. J. Fuzzy Syst., vol. 12 (2015), no. 3, 137-149.
      • A. Sehgal, S. Sehgal, P.K. Sharma, The number of fuzzy subgroups of a finite dihedral D_{p^mq^n}, Int. J. Fuzzy Math. Archive, vol. 8 (2015), no. 1, 51-57.
      • A. Sehgal, S. Sehgal, P.K. Sharma, Fuzzy subgroups of a finite abelian group Z_{p^mq^r} × Z_{p^nq^s}, Proceedings of The 4th International Fuzzy Systems Symposium, Turkey, 2015.
      • S.A. Adebisi, The classification of the fuzzy subgroups for a class of finite nilpotent groups, 2015.
      • R. Sulaiman, The symmetry property for the number of fuzzy subgroups of rectangle groups, Int. Math. Forum, vol. 11 (2016), no. 2, 55-60.
      • A. Sehgal, S. Sehgal, P.K. Sharma, The number of fuzzy subgroups of a finite abelian p-group Z_{p^m} × Z_{p^n}, Adv. Fuzzy Sets Syst., vol. 21 (2016), no. 1, 49-57.
      • G. Ali, On fuzzy generalizations of some results in finite group theory, Master Degree Thesis, COMSATS Institute of Information Technology, Lahore, Pakistan, 2016.
      • A. Sehgal, S. Sehgal, P.K. Sharma, M. Jakhar, Fuzzy subgroups of a finite abelian group Z_{p^mq^r} × Z_{p^n}, Adv. Fuzzy Sets Syst., vol. 21 (2016), no. 4, 291-302.
      • M. Benoumhani, A. Jaballah, Finite fuzzy topological spaces, Fuzzy Sets and Systems, vol. 321 (2017), 101-114.
      • I.K. Appiah, B.B. Makamba, Counting distinct fuzzy subgroups of some rank-3 abelian groups, Iran. J. Fuzzy Syst., vol. 14 (2017), no. 1, 163-181.
      • B. Davvaz, R.K. Ardekani, Counting fuzzy normal subgroups of non-abelian finite groups, J. Mult.-Valued Logic Soft Comput., vol. 28 (2017), no. 6, 571-590.
      • Chandni, P.K. Sharma, P. Singh, M. Singh, A recursive formula for the number of intuitionistic fuzzy subgroups of a finite cyclic group, AIP Conference Proceedings 1860, 020033 (2017), doi: http://dx.doi.org/10.1063/1.4990332.
      • A. Sehgal, M. Jakhar, The number of fuzzy subgroups for finite abelian p-group of rank three, Adv. Fuzzy Math., vol. 12 (2017), no. 4, 1035-1045.
      • M.E. Ogiugo, M. Enioluwafe, Classifying a class of the fuzzy subgroups of the alternating groups A_n, IMHOTEP - Math. Proc., vol. 4 (2017), no. 1, 27-33.
      • R.K. Ardekani, B. Davvaz, Classifying fuzzy subgroups and fuzzy normal subgroups of the group D_{2p} × Z_q and finite groups of order n <= 20, J. Intell. Fuzzy Syst., vol. 33 (2017), no. 6, 3615-3627.
      • P. Pandiammal, N. Martin, Properties of lower level subsets of intuitionistic anti L-fuzzy M-subgroups, IJSRSET, vol. 3 (2017), no. 8, 440-446.
      • M.E. Ogiugo, M. Enioluwafe, On the number of fuzzy subgroups of a symmetric group S_5, 2017.

  • A new method of proving some classical theorems of abelian groups, Southeast Asian Bull. Math., vol. 31 (2007), no. 6, 1191-1203, MR 2386997 (2009a:20090), ZBL 1145.20313 (pdf), cited by:

      • M. Hampejs, L. Tóth, On the subgroups of finite abelian groups of rank three, Annales Universitatis Scientiarum Budapestinensis, Sect. Comp., vol. 39 (2013), 111-124.
      • M.A. Bărăscu, Gradings on matrix algebras, Ph.D. Thesis, Faculty of Mathematics and Informatics, University of Bucharest, 2013.
      • N. Holighaus, Theory and implementation of adaptive time-frequency, Ph.D. Thesis, University of Wien, Austria, 2013.
      • W.G. Nowak, L. Tóth, On the average number of subgroups of the group Z_m × Z_n, Int. J. Number Theory, vol. 10 (2014), 363-374.
      • M. Hampejs, N. Holighaus, L. Tóth, C. Wiesmeyr, Representing and counting the subgroups of the group Z_m × Z_n, J. Numbers, vol. 2014, article ID 491428.
      • C.Y. Chew, A.Y.M. Chin, C.S. Lim, The number of subgroups of a direct product of cyclic p-groups, 2015.
      • B. Davvaz, R.K. Ardekani, Counting fuzzy normal subgroups of non-abelian finite groups, J. Mult.-Valued Logic Soft Comput., vol. 28 (2017), no. 6, 571-590.
      • L. Tóth, W. Zhai, On the error term concerning the number of subgroups of the groups Z_m × Z_n with m, n <= x, Acta Arithm., vol. 183 (2018), no. 3, 285-299.

  • E-lattices, Ital. J. Pure Appl. Math., vol. 22 (2007), 27-38, MR 2360994 (2009a:06015), ZBL 1175.06001 (pdf).

  • On the poset of conjugacy classes of subgroups of groups, Adv. Abstract Algebra, I. Tofan, M. Gontineac, M. Tărnăuceanu eds., Ed. Al. Myller, Iaşi, 2007, 103-122 (pdf).

  • On isomorphisms of canonical E-lattices, Fixed Point Theory, vol. 8 (2007), no. 1, 131-139, MR 2309287 (2008a:08001), ZBL 1123.06004 (pdf).

  • Complementation in normal subgroup lattices, Sci. An. USAMV Iaşi, tome XLIX (2006), vol. 2, 285-302, MR 2379318 (2008m:20039), ZBL 1167.20316 (pdf).

  • Complementation in subgroup lattices, Sci. An. USAMV Iaşi, tome XLIX (2006), vol. 2, 303-321, MR 2379317 (2008m:20038), ZBL 1167.20315 (pdf).

  • On the subgroup lattice of an abelian finite group, Ratio Math., no. 15 (2006), 65-74 (pdf).

  • On finite groups without normal subgroups of the same order, Mem. Secţ. Ştiinţ. Acad. Română, tome XXVIII (2005), 17-20, MR 2360443 (2008i:20023) (pdf).

  • A note on U-decomposable groups, Sci. An. USAMV Iaşi, tome XLVIII (2005), vol. 2, 409-412, MR 2397193 (2009a:20035), ZBL 1168.20305 (pdf).

  • Pseudocomplemented groups, Sci. An. Univ. "Al. I. Cuza" Iaşi, ser. Math., tome LI (2005), fasc. 1, 201-206, MR 2187369 (2006i:20020), ZBL 1109.20018 (pdf).

  • On the group of autoprojectivities of an abelian p-group, Current Research Math. Fuzzy Systems, E. Cortellini, H.N. Teodorescu, I. Tofan, A.C. Volf eds., Ed. Panfilius, Iaşi, 2005, 93-96 (pdf).

  • U-decomposable groups, Sci. An. USAMV Iaşi, tome XLVII (2004), vol. 2, 229-236, MR 2148117 (pdf).

  • On groups whose lattices of subgroups are pseudocomplemented, Fuzzy Systems & Artificial Intelligence, vol. 10 (2004), no. 2, 45-49 (pdf).

  • A note on fundamental group lattices, Current Topics Compt. Sci., F. Eugeni, H. Luchian eds., Ed. Panfilius, Iaşi, 2004, 109-114 (pdf).

  • Elementary non-CLT groups of order pq^n, Current Topics Compt. Sci., F. Eugeni, H. Luchian eds., Ed. Panfilius, Iaşi, 2004, 105-108 (pdf).

  • Latticeal representations of groups, Sci. An. Univ. "Al. I. Cuza" Iaşi, ser. Math., tome L (2004), fasc. 1, 19-31, MR 2129028 (2006e:20029), ZBL 1078.20027 (pdf).

  • On the groups associated to genetic recombinations, Sci. An. USAMV Iaşi, tome XLVI (2003), vol. 2, 165-170, MR 2149041, ZBL 1168.20311 (pdf).

  • Special classes of hypergroup representations, Ital. J. Pure Appl. Math., vol. 14 (2003), 213-218, MR 2073562, ZBL 1149.20305 (pdf), cited by:

      • Y. Feng, The L-fuzzy hyperstructures (X, ∧' , ∨') and (X, ∨' , ∧'), Ital. J. Pure Appl. Math., vol. 26 (2009), 159-170.

  • Fundamental group lattices, Current Research Compt. Sci., Theory and Applications, F. Eugeni, H. Luchian eds., Ed. Panfilius, Iaşi, 2003, 117-126 (pdf).

  • Actions of groups on lattices, Sci. An. Univ. "Ovidius" Constanţa, ser. Math., vol. X (2002), fasc. 1, 135-148, MR 2070193 (2005b:05220), ZBL 1058.05069 (pdf), cited by:

      • V. Leoreanu-Fotea, B. Davvaz, F. Feng, C. Chiper, Join spaces, soft join spaces and lattices, Sci. An. Univ. "Ovidius" Constanţa, ser. Math., vol. XXII (2014), fasc. 1, 155-167.

  • On the subgroup lattice of a semidirect product of finite cyclic groups, Mem. Secţ. Ştiinţ. Acad. Română, tome XXV (2002), 219-228, MR 2150333 (2006h:20037) (pdf), cited by:

      • O.O. Oluwafunmilayo, M. Enioluwafe, On counting subgroups for a class of finite non-abelian p-groups and related problems, IMHOTEP - Math. Proc., vol. 4 (2017), no. 1, 34-43.

  • Some properties of the divisible rings, Scr. Sci. Math., vol. II, fasc. 1, Chişnău, 2002, 172-180 (pdf).

  • Non-units ideals in algebraic function field, Scr. Sci. Math., vol. II, fasc. 1, Chişnău, 2002, 180-190 (pdf).

  • A property of the functors Tor and Ext, Sci. An. Univ. "Ovidius" Constanţa, ser. Math., vol. VII (1999), fasc. 2, 69-79, MR 1979154 (2004a:16012), ZBL 1034.16500 (pdf).

Other articles

  • Asupra unei probleme de algebră dată la Olimpiada de Matematică, faza naţională, 2017, Recreaţii Matematice, vol. XX (2018), no. 1, 1-3 (pdf).

  • Un criteriu de comutativitate a grupurilor, Recreaţii Matematice, vol. XVIII (2016), no. 2, 106-107 (pdf).

  • Un survey privitor la gradul de comutativitate al grupurilor finite, Recreaţii Matematice, vol. XVII (2015), no. 1, 4-13 (pdf).

  • O generalizare a unei probleme de algebră dată la Olimpiada de Matematică, faza judeţeană, 2013 (Grupuri finite cu proprietatea (P)), Recreaţii Matematice, vol. XV (2013), no. 2, 92-95 (pdf).

  • Ireductibilitate în inele de polinoame, Recreaţii Matematice, vol. XV (2013), no. 1, 36-41 (pdf).

Unpublished articles (these articles are based on a result taken from the American Mathematical Monthly which is conjecturally true, but whose proof is still pending)

  • A generalization of a result on the element orders of a finite group (pdf).

  • An inequality detecting nilpotency of finite groups (with T. De Medts) (pdf), cited by:

      • M. Garonzi, M. Patassini, Inequalities detecting structural properties of a finite group, Comm. Algebra, vol. 45 (2017), no. 2, 677-687.
      • M. Herzog, P. Longobardi, M. Maj, Properties of finite and periodic groups determined by their element orders, Group Theory and Computation, Springer, 2018, 59-90.