
Finite groups with two ChermakDelgado measures, submitted.

The number of cyclic subgroups of finite abelian groups and Menon's identity, submitted.

A note on the number of cyclic subgroups of a finite group (with M.S. Lazorec), submitted.

Breaking points in the poset of conjugacy classes of subgroups of a finite group, submitted.

On the ChermakDelgado lattice of a finite group (with R. McCulloch), submitted.

On some probabilistic aspects of (generalized) dicyclic groups (with M.S. Lazorec), submitted, cited by:
 M.S. Lazorec, Probabilistic aspects of ZMgroups, 2017.

A characterization of PSL(2,q), q=5,7, accepted for publication in Algebra Colloq.

Finite groups with two relative subgroup commutativity degrees (with M.S. Lazorec), accepted for publication in Publ. Math. Debrecen, cited by:
 M.S. Lazorec, Relative cyclic subgroup commutativity degrees of finite groups, 2018.

A note on subgroup commutativity degrees of finite groups, accepted for publication in Quaest. Math.

Cyclic factorization numbers of finite groups (with M.S. Lazorec), accepted for publication in Ars Combin., cited by:
 M.S. Lazorec, Probabilistic aspects of ZMgroups, 2017.

Finite groups with a certain number of cyclic subgroups II, Acta Univ. Sapientiae, Math., vol. 10 (2018), no. 2
(pdf), cited by:
 W. Zhou, On the number of cyclic subgroups in finite groups, 2016.
 W. Zhou, Finite groups with small number of cyclic subgroups, 2016.
 S.M. Robati, On finite groups having a certain number of cyclic subgroups, 2018.

Minimal nonIwasawa finite groups, Results Math., vol. 73 (2018), no. 4, article ID 143, MR 3862790
(pdf), cited by:
 M.S. Lazorec, Relative cyclic subgroup commutativity degrees of finite groups, 2018.

Addendum to "On a generalization of the Gauss formula", AsianEur. J. Math., vol. 11 (2018), no. 4, article ID 1891001, MR 3835712, ZBL 1392.20014
(pdf).

Breaking points in centralizer lattices, C. R. Math. Acad. Sci. Paris, vol. 356 (2018), no. 8, 843845, MR 3851536, ZBL 06917459
(pdf).

A nilpotency criterion for finite groups, Acta Math. Hung., vol. 155 (2018), no. 2, 499501, MR 3831314
(pdf), cited by:
 A.D. Ramos, A. Viruel, A pnilpotency criterion for finite groups, 2018.

Factorization numbers of finite rank 3 abelian pgroups, J. Combin. Math. Combin. Comput., vol. 105 (2018), 7780, MR 3790850, ZBL 06902637
(pdf).

Cyclic subgroup commutativity degrees of finite groups (with M.S. Lazorec), Rend. Semin. Mat. Univ. Padova, vol. 139 (2018), 225240, MR3825188, ZBL 06898047
(pdf), cited by:
 M.S. Lazorec, Probabilistic aspects of ZMgroups, 2017.
 M.S. Lazorec, Relative cyclic subgroup commutativity degrees of finite groups, 2018.

Two classes of finite groups whose ChermakDelgado lattice is a chain of length zero (with R. McCulloch), Comm. Algebra, vol. 46 (2018), no. 7, 30923096, MR 3780847, ZBL 06900829
(pdf).

On the poset of classes of isomorphic subgroups of a finite group, Int. J. Open Problems Compt. Math., vol. 11 (2018), no. 3, 3236
(pdf).

A note on the ChermakDelgado lattice of a finite group, Comm. Algebra, vol. 46 (2018), no. 1, 201204, MR 3764856, ZBL 1394.20012
(pdf), cited by:
 R. McCulloch, Finite groups with a trivial ChermakDelgado subgroup,
J. Group Theory, vol. 21 (2018), no. 3, 449461.

The ChermakDelgado lattice of ZMgroups, Results Math., vol. 72 (2017), no. 4, 18491855, MR 3735527, ZBL 1386.20014
(pdf).

Addendum to "On finite groups with perfect subgroup order subsets", Int. J. Open Problems Compt. Math., vol. 10 (2017), no 2, 1719
(pdf).

Finite groups determined by an inequality of the orders of their subgroups II, Comm. Algebra, vol. 45 (2017), no. 11, 48654868, MR 3670357, ZBL 1375.20025
(pdf).

A note on a class of gyrogroups, Quasigroups Related Systems, vol. 25 (2017), no. 1, 151154, MR 3651039, ZBL 1371.20059
(pdf), cited by:
 Abraham A. Ungar, Symmetry groups of systems of entangled particles,
J. Geom. Symmetry Phys., vol. 48 (2018), 4777.

On the number of subgroups of a given exponent in a finite abelian group (with L. Tóth), Publ. Inst. Math. Beograd, vol. 101 (115) (2017), 121133, MR 3700407
(pdf), cited by:
 A. Sehgal, S. Sehgal, P.K. Sharma, The number of subgroups of a finite abelian
pgroup of rank three, 2016.
 L. Tóth, The number of subgroups of the group Z_m × Z_n × Z_r × Z_s, 2016.
 L. Tóth, Characteristic subgroup lattices and HopfGalois structures, 2018.

On a generalization of the Gauss formula, AsianEur. J. Math., vol. 10 (2017), no. 1, article ID 1750008, MR 3627663, ZBL 1367.20025
(pdf).

The posets of classes of isomorphic subgroups of finite groups, Bull. Malays. Math. Sci. Soc., vol. 40 (2017), no. 1, 163172, MR 3592900, ZBL 1356.20011
(pdf).

Normality degrees of finite groups, Carpathian J. Math., vol. 33 (2017), no. 1, 115126, MR 3727209, ZBL 06897313
(pdf), cited by:
 F.G. Russo, Strong subgroup commutativity degree and some recent problems on the commuting probabilities of elements and subgroups,
Quaest. Math., vol. 39 (2016), no. 8, 10191036.
 M.S. Lazorec, Relative cyclic subgroup commutativity degrees of finite groups, 2018.

On the factorization numbers of some finite pgroups, Ars Combin., vol. 128 (2016), 39, MR 3526148, ZBL 06644255
(pdf), cited by:
 D.E. Otera, F.G. Russo, Permutability degrees of finite groups, Filomat, vol. 30 (2016), no. 8, 21652175.
 Y. Wang, G. Peng, F. Zhou, Factorization number of a class of generalized extraspecial pgroups,
Henan Sci., vol. 34 (2016), no. 12, 19491955.
 M.S. Lazorec, Probabilistic aspects of ZMgroups, 2017.

On the number of diamonds in the subgroup lattice of a finite abelian group (with D.G. Fodor), Sci. An. Univ. "Ovidius" Constanţa, ser. Math., vol. XXIV (2016), fasc. 2, 205215, MR 3546637, ZBL 1389.20036
(pdf).

A new equivalence relation to classify the fuzzy subgroups of finite groups, Fuzzy Sets and Systems, vol. 289 (2016), 113121, MR 3454465, ZBL 1374.20077
(pdf), cited by:
 G. Ali, On fuzzy generalizations of some results in finite group theory, Master Degree
Thesis, COMSATS Institute of Information Technology, Lahore, Pakistan, 2016.
 A. Olayiwola, On explicit formula for calculating the number of fuzzy subgroups of some dihedral groups, 2016.
 A. Olayiwola, On distinct fuzzy subgroups of nontrivial semidirect product of Z_4 and Z_4,
ATBU J. Sci. Tech. Edu., vol. 5 (2017), no. 2, 175179.
 M.E. Ogiugo, M. Enioluwafe, Classifying a class of the fuzzy subgroups of the alternating groups
A_n, IMHOTEP  Math. Proc., vol. 4 (2017), no. 1, 2733.
 A. Olayiwola, B.A. Suleiman, On the number of distinct fuzzy subgroups for some elementary abelian groups
and quaternion groups, Fuzzy Math. Arch., vol. 13 (2017), no. 1, 1723.
 M.E. Ogiugo, M. Enioluwafe, On the number of fuzzy subgroups of a symmetric group S_5, 2017.
 A. Abbas, U. Hayat, D. LópezAguayo, Fixed points of automorphisms of certain noncyclic pgroups and the dihedral group,
Symmetry, vol. 10 (2018), no. 7, article ID 238.
 A. Olayiwola, B. Isyaku, The number of distinct fuzzy subgroups of dihedral group of order 60,
JQMA, vol. 14 (2018), no. 1, 6779.

The subgroup commutativity degree of finite Pgroups, Bull. Aust. Math. Soc., vol. 93 (2016), no. 1, 3741, MR 3436013, ZBL 1343.20030
(pdf), cited by:
 F.G. Russo, Strong subgroup commutativity degree and some recent problems on the commuting probabilities of elements and subgroups,
Quaest. Math., vol. 39 (2016), no. 8, 10191036.

The number of chains of subgroups of a finite elementary abelian pgroup, Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar., vol. 77 (2015), no. 4, 6568, MR 3452533, ZBL 1363.20076
(pdf).

A generalization of the Euler's totient function, AsianEur. J. Math., vol. 8 (2015), no. 4, article ID 1550087, MR 3424162, ZBL 1336.20029
(pdf), cited by:
 A.D. Ramos, A. Viruel, A pnilpotency criterion for finite groups, 2018.

Solitary subgroups and solitary quotients of ZMgroups, Sci. Stud. Res., Ser. Math. Inform., vol. 25 (2015), no. 1, 237242, MR 3384660, ZBL 1349.20018
(pdf).

Finite groups with a certain number of cyclic subgroups, Amer. Math. Monthly, vol. 122 (2015), no. 3, 275276, MR 3327719, ZBL 1328.20045
(pdf), cited by:
 J. Dillstrom, On the number of distinct cyclic subgroups of a given finite group, Master Degree
Thesis, Missouri State University, USA, 2016.
 W. Zhou, On the number of cyclic subgroups in finite groups, 2016.
 W. Zhou, Finite groups with small number of cyclic subgroups, 2016.
 J. Wang, D. Jiang, M. Zhong, A characterization of alternating group of degree four,
J. Xiamen Univ. (Nat. Sci.), vol. 56 (2017), no. 1, 142143.
 I. Lima, M. Garonzi, On the number of cyclic subgroups of a finite group, 2017.
 I. Lima, R. Bastos, J.R. Rogério, Maximal covers of finite groups, 2018.
 H. Kalra, Finite groups with specific number of cyclic subgroups, 2018.
 S.M. Robati, On finite groups having a certain number of cyclic subgroups, 2018.
 R. Belshoff, J. Dillstrom, R. Reid, Finite groups with a prescribed number of cyclic subgroups, 2018.

Cyclicity degrees of finite groups (with L. Tóth), Acta Math. Hung., vol. 145 (2015), no. 2, 489504, MR 3325804, ZBL 1348.20027
(pdf), cited by:
 M.H. Jafari, A.R. Madadi, On the number of cyclic subgroups of a finite group,
Bull. Korean Math. Soc., vol. 54 (2017), no. 6, 21412147.
 M.S. Lazorec, Probabilistic aspects of ZMgroups, 2017.

Classifying fuzzy normal subgroups of finite groups, Iran. J. Fuzzy Syst., vol. 12 (2015), no. 2, 107115, MR 3363581, ZBL 1336.20066
(pdf), cited by:
 G. Ali, On fuzzy generalizations of some results in finite group theory, Master Degree
Thesis, COMSATS Institute of Information Technology, Lahore, Pakistan, 2016.
 B. Davvaz, R.K. Ardekani, Counting fuzzy normal subgroups of nonabelian finite groups,
J. Mult.Valued Logic Soft Comput., vol. 28 (2017), no. 6, 571590.
 R.K. Ardekani, B. Davvaz, Classifying fuzzy subgroups and fuzzy normal subgroups of the group
D_{2p} × Z_q and finite groups of order n <= 20, J. Intell. Fuzzy Syst., vol. 33
(2017), no. 6, 36153627.
 U. Shuaib, M. Shaheryar, W. Asghar, On some characterizations of ofuzzy subgroups,
Int. J. Math. Comp. Sci., vol. 13 (2018), no. 2, 119131.

On finite groups with dismantlable subgroup lattices, Canad. Math. Bull., vol. 52 (2015), no. 1, 182187, MR 3303222, ZBL 1323.20019
(pdf).

A note on a metric associated to certain finite groups, Math. Pannonica, vol. 25 (20142015), no. 2, 5761, MR 3699234
(pdf), cited by:
 M.M. Deza, E. Deza, Enciclopedia of distances, Distances in Algebra,
Springer, 2016, 199214.

On the converse of Fuzzy Lagrange's Theorem, J. Intell. Fuzzy Syst., vol. 27 (2014), no. 3, 14871490, MR 3259362, ZBL 1310.20067
(pdf), cited by:
 V.H.M. Padilla, Los teoremas de Cayley y de Lagrange para grupos difusos, Bachelor
Thesis, Universidad Nacional de Trujillo, Facultad de Ciencias Físicas y Matematicás, Trujillo, Perú, 2016.

The normal subgroup structure of ZMgroups, Ann. Mat. Pura Appl., vol. 193 (2014), no. 4, 10851088, MR 3237917, ZBL 1304.20034
(pdf).

Remarks on the exponent function associated to a finite group, Sci. Stud. Res., Ser. Math. Inform., vol. 24 (2014), no. 1, 141147, MR 3245073, ZBL 1313.20013
(pdf).

NonCLT groups of order pq^3, Math. Slovaca, vol. 64 (2014), no. 2, 311314, MR 3201346, ZBL 1349.20028
(pdf).

On finite groups with perfect subgroup order subsets, Int. J. Open Problems Compt. Math., vol. 7 (2014), no. 1, 4146
(pdf).

On the sum of element orders of finite abelian groups (with D.G. Fodor), Sci. An. Univ. "Al. I. Cuza" Iaşi, ser. Math., tome LX (2014), fasc. 1, 17, MR 3252452, ZBL 1299.20059
(pdf), cited by:
 C.Y. Chew, A.Y.M. Chin, C.S. Lim, Sum of element orders of finite
abelian groups, Proceedings of The 3rd International Conference on Computer Science and Computational Mathematics (ICCSCM),
Langkawi, Malaysia, 2014, 129132.
 S.M. Jafarian Amiri, M. Amiri, Characterization of pgroups by sum of the element orders,
Publ. Math. Debrecen, vol. 86 (2015), no. 12, 3137.
 S.M. Jafarian Amiri, M. Amiri, Second maximum sum of the
product of the orders of two distinct elements in nilpotent groups, 2015.
 C.Y. Chew, A.Y.M. Chin, C.S. Lim, A recursive formula for the sum of element orders
of finite abelian groups, Results Math., vol. 72 (2017), no. 4, 18971905.

A characterization of elementary abelian 2groups, Arch. Math., vol. 102 (2014), no. 1, 1114, MR 3154153, ZBL 1330.11015
(pdf); see also Erratum to "A characterization of elementary abelian 2groups",
Arch. Math., vol. 108 (2017), no. 2, 223224,
MR 3605067, ZBL 06695534 (pdf), cited by:
 W.A. Moens, Arithmeticallyfree groupgradings of Lie algebras, 2016.
 C.S. Anabanti, A characterization of elementary abelian 3groups, 2016.

Some combinatorial aspects of finite Hamiltonian groups, Bull. Iranian Math. Soc., vol. 39 (2013), no. 5, 841854, MR 3126183, ZBL 1303.20020
(pdf), cited by:
 A.R. Ashrafi, A. Hamzeh, The order supergraph of the power graph of a finite group,
Turkish J. Math., vol. 42 (2018), no. 4, 19781989.

A note on the product of element orders of finite abelian groups, Bull. Malays. Math. Sci. Soc., vol. 36 (2013), no. 4, 11231126, MR 3108800, ZBL 1280.20058
(pdf), cited by:
 A. Erfanian, F.M.A. Manaf, F.G. Russo, N.H. Sarmin, On the
exterior degree of the wreath product of finite abelian groups, Bull. Malays. Math. Sci. Soc., vol. 37 (2014), no. 1, 2536.
 S.M. Jafarian Amiri, M. Amiri, Second maximum sum of the
product of the orders of two distinct elements in nilpotent groups, 2015.
 S.M. Jafarian Amiri, M. Amiri, Sum of the element orders in groups
of the squarefree orders, Bull. Malays. Math. Sci. Soc., vol. 40 (2017), no. 3, 10251034.

On the number of fuzzy subgroups of finite symmetric groups, J. Mult.Valued Logic Soft Comput., vol. 21 (2013), no. 12, 201213, MR 3113673, ZBL 1393.20049
(pdf), cited by:
 B. Davvaz, R.K. Ardekani, Counting fuzzy normal subgroups of nonabelian finite groups,
J. Mult.Valued Logic Soft Comput., vol. 28 (2017), no. 6, 571590.
 M.E. Ogiugo, M. Enioluwafe, Classifying a class of the fuzzy subgroups of the alternating groups
A_n, IMHOTEP  Math. Proc., vol. 4 (2017), no. 1, 2733.
 R.K. Ardekani, B. Davvaz, Classifying fuzzy subgroups and fuzzy normal subgroups of the group
D_{2p} × Z_q and finite groups of order n <= 20, J. Intell. Fuzzy Syst., vol. 33
(2017), no. 6, 36153627.
 M.E. Ogiugo, M. Enioluwafe, On the number of fuzzy subgroups of a symmetric group S_5, 2017.

Counting certain sublattices in the subgroup lattice of a finite abelian group (with D.G. Fodor), Sci. An. Univ. Craiova, vol. 40 (2013), no. 1, 106111, MR 3078964, ZBL 1289.20033
(pdf), cited by:
 H. Mukherjee, On the number of noncomparable pairs of elements
in a distributive lattice, 2013.
 A. Olayiwola, A.D. Akinremi, On subgroups lattice of some A_2groups,
ATBU J. Sci. Tech. Edu., vol. 5 (2017), no. 2, 180186.

A characterization of the quaternion group, Sci. An. Univ. "Ovidius" Constanţa, ser. Math., vol. XXI (2013), fasc. 1, 209214, MR 3065384
(pdf), cited by:
 D. Savin, About some split central simple algebras,
Sci. An. Univ. "Ovidius" Constanţa, ser. Math., vol. XXII (2014), fasc. 1, 263272.
 C. Flaut, D. Savin, Some properties of symbol algebras of degree three, Math. Reports,
vol. 16 (2014), no. 3, 443463.
 C. Flaut, A Clifford algebra associated to generalized Fibonacci quaternions,
Adv. Difference Equ., vol. 2014, article ID 279.
 C. Flaut, D. Savin, Some examples of division symbol algebras of degree 3 and 5,
Carpath. J. Math., vol. 31 (2015), no. 2, 197204.
 D. Savin, Some properties of Fibonacci numbers, Fibonacci octonions, and generalized FibonacciLucas octonions,
Adv. Difference Equ., vol. 2015, article ID 298.
 D. Savin, Special numbers, special quaternions and special symbol elements, 2017.

Classifying fuzzy subgroups for a class of finite pgroups, Critical Review (a publication of Society for Mathematics of Uncertainty), vol. VII (2013), 3039
(pdf), cited by:
 S.A. Adebisi, The classification of the fuzzy subgroups for a class of
finite nilpotent groups, 2015.
 M.M. Munywoki, B.B. Makamba, Classifying fuzzy subgroups of the abelian group
Z_{p_1} × Z_{p_2} × ... × Z_{p_n} for distinct primes p_1,
p_2, ..., p_n, Ann. Fuzzy Math. Inform., vol. 13 (2017), no. 2, 289296.
 B. Davvaz, R.K. Ardekani, Counting fuzzy normal subgroups of nonabelian finite groups,
J. Mult.Valued Logic Soft Comput., vol. 28 (2017), no. 6, 571590.
 R.K. Ardekani, B. Davvaz, Classifying fuzzy subgroups and fuzzy normal subgroups of the group
D_{2p} × Z_q and finite groups of order n <= 20, J. Intell. Fuzzy Syst., vol. 33
(2017), no. 6, 36153627.

A note on fundamental group lattices, Bull. Univ. "Transilvania" Braşov, ser. III, vol. 5 (2012), no. 2, 107112, MR 3035862, ZBL 1324.20032
(pdf), cited by:
 H.R. Moradi, M. Moradi, An approach to rewritable probability in finite groups, Adv. Nat. Appl. Sciences,
vol. 8 (2014), no. 11, 14.

A note on the lattice of fuzzy subgroups of a finite group, J. Mult.Valued Logic Soft Comput., vol. 19 (2012), no. 56, 537545, MR 3012373, ZBL 1393.20048
(pdf), cited by:
 D. Bayrak, S. Yamak, A note on the lattice of TLsubmodules of a module,
Annals Fuzzy Math. Inform., vol. 10 (2015), no. 2, 323330.
 M. Akram, B. Davvaz, F. Feng, Fuzzy soft Lie algebras, J. Mult.Valued Logic Soft Comput.,
vol. 24 (2015), no. 56, 501520.

A generalization of Menon's identity, J. Number Theory, vol. 132 (2012), no. 11, 25682573, MR 2954990, ZBL 1276.11010
(pdf), cited by:
 L. Tóth, Another generalization of the gcdsum function, Arab. J. Math., vol. 2 (2013),
no. 3, 313320.
 C. Miguel, Menon's identity in residually finite Dedekind domains, J. Number Theory, vol. 137 (2014), 179185.
 C. Calderón, J.M. Grau, A.M. OllerMarcén, L. Tóth,Counting invertible sums of squares modulo n and
a new generalization of Euler's totient function, Publ. Math. Debrecen, vol. 87 (2015), no. 12, 133145.
 C. Miguel, A Menontype identity in residually finite Dedekind domains, J. Number Theory, vol. 164 (2016), 4351.
 Y. Li, D. Kim, A Menontype identity with many tuples of group of units in residually finite Dedekind domains,
J. Number Theory, vol. 175 (2017), 4250.
 Y. Li, D. Kim, Menontype identities derived from actions of subgroups of general linear groups,
J. Number Theory, vol. 179 (2017), 97112.
 L. Tóth, Menontype identities concerning Dirichlet characters, Int. J. Number Theory, vol. 14 (2018), 10471054.
 Y. Li, X. Hu, D. Kim, A generalization of Menon's identity with Dirichlet characters, 2018.
 Y. Li, X. Hu, D. Kim, Menontype identities with additive characters, 2018.
 Y. Li, X. Hu, D. Kim, A Menontype identity with multiplicative and additive characters, 2018.
 M. Chen, S. Hu, Y. Li, On MenonSury's identity with several Dirichlet characters, 2018.
 D. Kim, Y. Li, R. Qiao, A generalization of Menon identity to higher exponent, 2018.

Classifying fuzzy subgroups of finite nonabelian groups, Iran. J. Fuzzy Syst., vol. 9 (2012), no. 4, 3343, MR 3112759, ZBL 1260.20092
(pdf), cited by:
 O. Ndiweni, B.B. Makamba, Distinct fuzzy subgroups of some dihedral
groups, Adv. Fuzzy Sets Syst., vol. 9 (2011), no. 1, 6591.
 B. Davvaz, R.K. Ardekani, Counting fuzzy subgroups of a special class of
nonabelian groups of order p^3, Ars Combin., vol. 103 (2012), 175179.
 F. Saeedi, T. Rezaiyan, Counting fuzzy subgroups of some abelian pgroups of ranks
2, 3 and 4, 2012.
 B. Davvaz, R.K. Ardekani, Classifying fuzzy subgroups of dicyclic
groups, J. Mult.Valued Logic Soft Comput., vol. 20 (2013), no. 56, 507525.
 B. Davvaz, R.K. Ardekani, Counting fuzzy subgroups of nonabelian groups of
order p^3 and 2^4, J. Mult.Valued Logic Soft Comput., vol. 21 (2013), no. 56, 479492.
 H. Darabi, F. Saeedi, M. Farrokhi D.G., The number of fuzzy
subgroups of some nonabelian groups, Iran. J. Fuzzy Syst., vol. 10 (2013), no. 6, 101107.
 A. Sehgal, S. Sehgal, P.K. Sharma, The number of fuzzy subgroups of a finite dihedral
D_{p^mq^n}, Int. J. Fuzzy Math. Archive, vol. 8 (2015), no. 1, 5157.
 S.A. Adebisi, The classification of the fuzzy subgroups for a class of
finite nilpotent groups, 2015.
 G. Ali, On fuzzy generalizations of some results in finite group theory, Master Degree
Thesis, COMSATS Institute of Information Technology, Lahore, Pakistan, 2016.
 A. Olayiwola, On explicit formula for calculating the number of fuzzy subgroups of some dihedral groups, 2016
 B. Davvaz, R.K. Ardekani, Counting fuzzy normal subgroups of nonabelian finite groups,
J. Mult.Valued Logic Soft Comput., vol. 28 (2017), no. 6, 571590.
 M.E. Ogiugo, M. Enioluwafe, Classifying a class of the fuzzy subgroups of the alternating groups
A_n, IMHOTEP  Math. Proc., vol. 4 (2017), no. 1, 2733.
 R.K. Ardekani, B. Davvaz, Classifying fuzzy subgroups and fuzzy normal subgroups of the group
D_{2p} × Z_q and finite groups of order n <= 20, J. Intell. Fuzzy Syst., vol. 33
(2017), no. 6, 36153627.
 M.E. Ogiugo, M. Enioluwafe, On the number of fuzzy subgroups of a symmetric group S_5, 2017.
 U. Shuaib, M. Shaheryar, W. Asghar, On some characterizations of ofuzzy subgroups,
Int. J. Math. Comp. Sci., vol. 13 (2018), no. 2, 119131.
 A. Olayiwola, B. Isyaku, The number of distinct fuzzy subgroups of dihedral group of order 60,
JQMA, vol. 14 (2018), no. 1, 6779.

Some open problems on a class of finite groups, Int. J. Open Problems Compt. Math., vol. 5 (2012), no. 2, 8894
(pdf).

On an open problem by J.N. Mordeson, K.R. Bhutani and A. Rosenfeld, Critical Review (a publication of Society for Mathematics of Uncertainty), vol. VI (2012), 38, ZBL 1275.20072
(pdf).

Finite groups determined by an inequality of the orders of their elements, Publ. Math. Debrecen, vol. 80 (2012), no. 34, 457463, MR 2943017, ZBL 1261.20028
(pdf), cited by:
 S.M. Jafarian Amiri, M. Amiri, Characterization of pgroups by sum of the element orders,
Publ. Math. Debrecen, vol. 86 (2015), no. 12, 3137.
 H. Xue, On a special class of finite 3groups, J. Southwest China Normal
Univ. (Natural Sci. Ed.), vol. 2015, no. 8, 79.
 W. Shi, H. Lv, A note of CP_2groups, Comm. Math. Stat., vol. 5 (2017), no. 4, 447451.

Solitary quotients of finite groups, Cent. Eur. J. Math., vol. 10 (2012), no. 2, 740747, MR 2886569, ZBL 1257.20024
(pdf); see also Erratum to "Solitary quotients of finite groups",
Cent. Eur. J. Math., vol. 11 (2013), no. 2, 376377, MR 3000653, ZBL 1260.20031 (pdf), cited by:
 O.L. Castro, Solitary subgroups of finite groups, Ph.D. Thesis,
Polytechnic University of Valencia, 2015.
 R. EstebanRomero, O. Liriano, A note on solitary subgroups of finite groups,
Comm. Algebra, vol. 44 (2016), no. 7, 29452952.

A note on subgroup coverings of finite groups, Sci. An. Univ. Timişoara, ser. Math.Inform., tome XLIX (2011), fasc. 2, 129135, MR 2949162, ZBL 1260.20041
(pdf).

Finite groups determined by an inequality of the orders of their normal subgroups, Sci. An. Univ. "Al. I. Cuza" Iaşi, ser. Math., tome LVII (2011), fasc. 2, 229238, MR 2933379, ZBL 1240.20035
(pdf), cited by:
 S.J. Baishya, A.K. Das, Harmonic numbers and finite groups,
Rend. Semin. Mat. Univ. Padova, vol. 132 (2014), 3343.
 S.J. Baishya, Revisiting the Leinster groups,
C. R. Math. Acad. Sci. Paris, vol. 352 (2014), no. 1, 16.

Addendum to "Subgroup commutativity degrees of finite groups", J. Algebra, vol. 337 (2011), no. 1, 363368, MR 2796081, ZBL 1233.20023
(pdf), cited by:
 F.G. Russo, Considerations on the subgroup commutativity degree and related
notions, 2011.
 M. Farrokhi D.G., Subgroup commutativity degree of PSL(2, p^n),
The Fourth Group Theory Conference of Iran, Payam Noor University of Isfahan, Iran, 2012.
 F. Saeedi, M. Farrokhi D.G., Subgroup permutability degree of PSL(2,
p^n), Glasgow Math. J., vol. 55 (2013), no. 3, 581590.
 S. Aivazidis, The subgroup permutability degree of projective special linear groups over
fields of even characteristic, J. Group Theory, vol. 16 (2013), no. 3, 383396.
 S. Aivazidis, On the subgroup permutability degree of
the simple Suzuki groups, Monatsh. Math., vol. 176 (2015), no. 3, 335358.
 S. Aivazidis, On the subgroup permutability degree of some finite simple groups,
Ph. D. Thesis, Queen Mary University, London, UK, 2015.
 H.Y. Xuang, H.M. Bao, X.Y. Shi, The influence of subgroup commutativity degrees on the structure of finite groups,
J. Math., vol. 35 (2015), no. 3, 743746.
 D.E. Otera, F.G. Russo, Permutability degrees of finite groups, Filomat, vol. 30 (2016), no. 8, 21652175.
 F.G. Russo, Strong subgroup commutativity degree and some recent problems on the commuting probabilities of elements and subgroups,
Quaest. Math., vol. 39 (2016), no. 8, 10191036.
 Y. Wang, G. Peng, F. Zhou, Factorization number of a class of generalized extraspecial pgroups,
Henan Sci., vol. 34 (2016), no. 12, 19491955.
 M.S. Lazorec, Relative cyclic subgroup commutativity degrees of finite groups, 2018.

Pseudocomplementation in (normal) subgroup lattices (with T. De Medts), Comm. Algebra, vol. 39 (2011), no. 1, 247262, MR 2770893, ZBL 1218.20014
(pdf), cited by:
 D. Bayrak, S. Yamak, Distributivity and pseudocomplementation of lattices of generalized Lsubgroups,
Int. J. of Algebra and Statistics, vol. 5 (2016), no. 2, 107114.

On the total number of principal series of a finite abelian group (with L. Bentea), Sci. An. Univ. "Ovidius" Constanţa, ser. Math., vol. XVIII (2010), fasc. 2, 4152, MR 2785793, ZBL 1224.05501
(pdf).

An arithmetic method of counting the subgroups of a finite abelian group, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), tome 53/101 (2010), no. 4, 373386, MR 2777681, ZBL 1231.20051
(pdf), cited by:
 L. Tóth, Menon's identity and arithmetical sums representing functions
of several variables, Rend. Sem. Mat. Univ. Politec. Torino, vol. 69 (2011), no. 1, 97110.
 D.E. Otera, F.G. Russo, Subgroup Scommutativity degree of finite
groups, Bull. Belg. Math. Soc. Simon Stevin, vol. 19 (2012), no. 2, 373382.
 L. Tóth, On the number of cyclic subgroups of a finite abelian
group, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), tome 55/103 (2012), no. 4, 423428.
 J. Bourgain, E. Fuchs, On representation of integers by binary quadratic forms,
Int. Math. Res. Notices, vol. 2012, no. 24, 55055553.
 C. Segovia, The classifying space of the 1+1 dimensional Gcobordism category, 2012.
 F. Saeedi, T. Rezaiyan, Counting fuzzy subgroups of some abelian pgroups of ranks
2, 3 and 4, 2012.
 M. Hampejs, L. Tóth, On the subgroups of finite abelian groups of rank three,
Annales Universitatis Scientiarum Budapestinensis, Sect. Comp., vol. 39 (2013), 111124.
 A. Sehgal, Y. Kumar, On the number subgroups of finite abelian group Z_m × Z_n,
Int. J. Algebra, vol. 7 (2013), no. 19, 915923.
 M.A. Bărăscu, Gradings on matrix algebras, Ph.D. Thesis, Faculty of Mathematics and Informatics,
University of Bucharest, 2013.
 C. Wiesmeyr, Construction of frames by discretization of phase space, Ph.D. Thesis,
University of Wien, Austria, 2013.
 N. Holighaus, Theory and implementation of adaptive timefrequency, Ph.D. Thesis,
University of Wien, Austria, 2013.
 H.M. Rodrigues, P.L.D.A. Rodrigues, J.E. Sarlabous, Algebraic
norm type tori as linear codes, Proceedings of COMPUMAT, Havana, Cuba, 2013.
 L. Tóth, Subgroups of finite abelian groups having rank two via Goursat's lemma,
Tatra Mt. Math. Publ., vol. 59 (2014), 93103.
 W.G. Nowak, L. Tóth, On the average number of subgroups of the group Z_m × Z_n,
Int. J. Number Theory, vol. 10 (2014), 363374.
 C.Y. Chew, A.Y.M. Chin, C.S. Lim, Sum of element orders of finite
abelian groups, Proceedings of The 3rd International Conference on Computer Science and Computational Mathematics (ICCSCM),
Langkawi, Malaysia, 2014, 129132.
 M. Hampejs, N. Holighaus, L. Tóth, C. Wiesmeyr, Representing and counting the subgroups of the
group Z_m × Z_n, J. Numbers, vol. 2014, article ID 491428.
 A. Sehgal, S. Sehgal, P.K. Sharma, The number of subgroups of a finite abelian
pgroup of rank two, Journal for Algebra and Number Theory Academia, vol. 5 (2015), no. 1, 2331.
 C.Y. Chew, A.Y.M. Chin, C.S. Lim, The number of subgroups of a finite abelian pgroup
of rank 4, Proceedings of AIP Conference, Selangor, Malaysia, 2015, doi: 10.1063/1.4932475.
 C.Y. Chew, A.Y.M. Chin, C.S. Lim, The number of subgroups of a direct product of cyclic pgroups,
2015.
 A. Sehgal, S. Sehgal, P.K. Sharma, The number of automorphisms of a finite abelian group of rank two,
J. Discrete Math. Sciences and Cryptography, vol. 19 (2016), no. 1, 163171.
 F. Zhou, F. Zhou, H. Liu, The generalized commutativity degree of finite groups,
Chinese Ann. Math., Ser. A, vol. 37 (2016), no. 2, 127136.
 A. Sehgal, S. Sehgal, P.K. Sharma, The number of subgroups of a finite abelian
pgroup of rank three, J. Calcutta Math. Soc., vol. 12 (2016), no. 2, 137152.
 H.M. Rodrigues, P.L.D.A. Rodrigues, J.E. Sarlabous, Algebraic norm type tori as
linear codes defined over abelian Galois extension Toro algebraico de Tipo Norma sobre una extensión Abeliana de Galois, 2016.
 L. Tóth, The number of subgroups of the group Z_m × Z_n × Z_r × Z_s, 2016.
 I.K. Appiah, B.B. Makamba, Counting distinct fuzzy subgroups of some rank3 abelian groups,
Iran. J. Fuzzy Syst., vol. 14 (2017), no. 1, 163181.
 A. Sehgal, S. Sehgal, P.K. Sharma, M. Jakhar, Counting subgroups of a nonabelian pgroup Z_{p^n} × Z_p,
Int. J. Pure Appl. Math., vol. 113 (2017), no. 10, 3746.
 O.O. Oluwafunmilayo, M. Enioluwafe, On counting subgroups for a class of finite nonabelian pgroups and related problems,
IMHOTEP  Math. Proc., vol. 4 (2017), no. 1, 3443.
 C.Y. Chew, A.Y.M. Chin, C.S. Lim, A recursive formula for the sum of element orders
of finite abelian groups, Results Math., vol. 72 (2017), no. 4, 18971905.
 L. Tóth, W. Zhai, On the error term concerning the number of
subgroups of the groups Z_m × Z_n with m, n <= x, Acta Arithm., vol. 183 (2018), no. 3, 285299.
 L. Tóth, Counting subrings of the ring Z_m × Z_n, 2018.
 B. Cisneros, C. Segovia, An approximation for the number of subgroups, 2018.
 F. Admasu, A. Sehgal, Counting subgroups of fixed order in finite abelian groups, 2018.

A characterization of generalized quaternion 2groups, C. R. Math. Acad. Sci. Paris, vol. 348 (2010), no. 1314, 731733, MR 2671150, ZBL 1205.20024
(pdf), cited by:
 Y. Chen, G. Chen, A note on a characterization of generalized quaternion 2groups,
C. R. Math. Acad. Sci. Paris, vol. 352 (2014), no. 6, 459461.

On the poset of subhypergroups of a hypergroup, Int. J. Open Problems Compt. Math., vol. 3 (2010), no. 2, 115122, MR 2669105, ZBL 1293.20065
(pdf), cited by:
 A.D. Lokhande, A. Gangadhara, On poset of subhypergroup and
hyper lattices, Int. J. Contemp. Math. Sciences, vol. 8 (2013), no. 12, 559564.
 A.D. Lokhande, A. Gangadhara, A note on distributivity of a poset
of subhypergroup of a hypergroup, IJRITCC, vol. 2 (2014), no. 4, 861866.
 R. Kellil, On the set of subhypergroup of certain canonical hypergroups C(n),
JP J. Algebra Number Theory Appl., vol. 38 (2016), no. 2, 185200.
 D. Bayrak, S. Yamak, S. Yilmaz, The lattice structure of subhypergroups of a hypergroup,
Proceedings of AHA 2017, Istambul, Turkey.
 D. Bayrak, S. Yamak, An answer to "On the poset of subhypergroups of a hypergroup", 2018.

Hyperstructures associated to Elattices, Gen. Math., vol. 17 (2009), no. 3, 1538, MR 2656752, ZBL 1199.06026
(pdf).

Counting maximal chains of subgroups of finite nilpotent groups (with M. Ştefănescu), Carpathian J. Math., vol. 25 (2009), no. 1, 119127, MR 2523045, ZBL 1178.20016
(pdf), cited by:
 B. Davvaz, R.K. Ardekani, Counting fuzzy normal subgroups of nonabelian finite groups,
J. Mult.Valued Logic Soft Comput., vol. 28 (2017), no. 6, 571590.

Subgroup commutativity degrees of finite groups, J. Algebra, vol. 321 (2009), no. 9, 25082520, MR 2504488, ZBL 1196.20024
(pdf), cited by:
 A. Castelaz, Commutativity degree of finite groups, Master Degree
Thesis, Wake Forest University, WinstonSalem, North Carolina, USA, 2010.
 A.M. Alghamdi, D.E. Otera, F.G. Russo, A survey on some recent
investigations of probability in group theory, Boll. Mat. Pura Appl., vol. 3 (2010), 8796.
 F. Saeedi, M. Farrokhi D.G., Factorization numbers of some finite groups,
Proceedings of The First Biennial International Group Theory Conference, Malaysia, 2011.
 M. Farrokhi D.G., Factorization numbers of finite abelian groups, Ferdowsi
University of Mashhad, Tehran, Iran, 2011.
 V.A. Chupordya, On some numerical characteristics of permutability subgroups
of finite groups, Proceedings of The 8th International Algebraic Conference in Ukraine, 2011.
 M.A.C. Valadão, O grau de comutatividade de subgrupos de um grupo
finito, Master Degree Thesis, Universidade de Brasilia, Departamento de Matemática, Brasilia, 2011.
 F.G. Russo, Considerations on the subgroup commutativity degree and related notions, 2011.
 F. Saeedi, M. Farrokhi D.G., Factorization numbers of some finite groups,
Glasgow Math. J., vol. 54 (2012), no. 2, 345354.
 M. Farrokhi D.G., Subgroup commutativity degree of PSL(2, p^n),
The Fourth Group Theory Conference of Iran, Payam Noor University of Isfahan, Iran, 2012.
 D.E. Otera, F.G. Russo, Subgroup Scommutativity degree of finite groups,
Bull. Belg. Math. Soc. Simon Stevin, vol. 19 (2012), no. 2, 373382.
 M. Farrokhi D.G., Factorization numbers of finite abelian groups, Int. J. Group
Theory, vol. 2 (2013), no. 2, 18.
 F. Saeedi, M. Farrokhi D.G., Subgroup permutability degree of PSL(2,
p^n), Glasgow Math. J., vol. 55 (2013), no. 3, 581590.
 S. Aivazidis, The subgroup permutability degree of projective special linear groups over
fields of even characteristic, J. Group Theory, vol. 16 (2013), no. 3, 383396.
 A. Gholami, M.R. Mollaei, Some inequalities of subgroup
commutativity degree of finite groups, Southeast Asian Bull. Math., vol. 37 (2013), no. 6, 845858.
 M. Farrokhi D.G., On the probability that a group satisfies a law,
Proceedings of RIMS Workshop, Japan, 2014.
 S. Aivazidis, On the subgroup permutability degree of
the simple Suzuki groups, Monatsh. Math., vol. 176 (2015), no. 3, 335358.
 S. Aivazidis, On the subgroup permutability degree of some finite simple groups,
Ph. D. Thesis, Queen Mary University, London, UK, 2015.
 H.Y. Xuang, H.M. Bao, X.Y. Shi, The influence of subgroup commutativity degrees on the structure of finite groups,
J. Math., vol. 35 (2015), no. 3, 743746.
 R. Rajkumar, P. Devi, Permutability graphs of subgroups of some finite nonabelian
groups, Discrete Math. Alg. Appl., vol. 8 (2016), no. 3, article ID 1650047.
 D.E. Otera, F.G. Russo, Permutability degrees of finite groups, Filomat, vol. 30 (2016), no. 8, 21652175.
 F.G. Russo, Strong subgroup commutativity degree and some recent problems on the commuting probabilities of elements and subgroups,
Quaest. Math., vol. 39 (2016), no. 8, 10191036.
 F. Zhou, F. Zhou, H. Liu, The generalized commutativity degree of finite groups,
Chinese Ann. Math., Ser. A, vol. 37 (2016), no. 2, 127136.
 Y. Wang, G. Peng, F. Zhou, Factorization number of a class of generalized extraspecial pgroups,
Henan Sci., vol. 34 (2016), no. 12, 19491955.
 X. Li, F. Zhou, The generalized commutativity degree of 4letters symmetric group S_4,
Pure Math., vol. 7 (2017), no. 3, 163167.
 N. Zaid, N.H. Sarmin, H. Rahmat, On the generalized conjugacy class graph of some dihedral groups,
Malays. J. Fund. Appl. Sciences, vol. 13 (2017), no. 2, 3639.
 D.E. Otera, F.G. Russo, Permutability degrees of some metacyclic groups, 2017.
 M.S. Lazorec, Probabilistic aspects of ZMgroups, 2017.
 N. Zaid, N.H. Sarmin, S.N. Amzee, A variant of commutativity degree and its generalized conjugacy class graph,
Adv. Sci. Letters, vol. 24 (2018), no. 6, 44294432.
 N. Zaid, N.H. Sarmin, S.N. Amzee, H. Rahmat, On the orbit of some metabelian groups of order 24 and its applications,
Proc. AIP Conference 1974, 030004 (2018), doi: 10.1063/1.5041648.
 A. Javadi, F. Fayazi, A. Gholami, Some new results related to subgroup commutativity degrees and pcommutativity degrees of finite groups,
Ital. J. Pure Appl. Math., vol. 39 (2018), 530543.
 M.S. Lazorec, Relative cyclic subgroup commutativity degrees of finite groups, 2018.

Distributivity in lattices of fuzzy subgroups, Inform. Sci., vol. 179 (2009), no. 8, 11631168, MR 2502093, ZBL 1160.20063
(pdf), cited by:
 B. Davvaz, M. Fathi, A.R. Salleh, Fuzzy hyperrings (Hvrings)
based on fuzzy universal sets, Inform. Sci., vol. 180 (2010), no. 16, 30213032.
 B.B. Makamba, V. Murali, Preferential normal fuzzy subgroups, Inform.
Sci., vol. 180 (2010), no. 24, 51255129.
 Ath. Kehagias, Some remarks on the lattice of fuzzy intervals, Inform.
Sci., vol. 181 (2011), no. 10, 18631873.
 J. Recasens, Permutable indistinguishability operators, perfect fuzzy groups and fuzzy
subgroups, Inform. Sci., vol. 196 (2012), 129142.
 F.B. Bergamaschi, R.H.N. Santiago, On properties of fuzzy ideals,
Proceedings of IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), Edmonton, Canada, 2013, 6267, doi:
10.1109/IFSANAFIPS.2013.6608376.
 D. Bayrak, S. Yamak, The lattice of generalized normal Lsubgroups,
J. Intell. Fuzzy Syst., vol. 27 (2014), no. 3, 11431152.
 D. Bayrak, S. Yamak, The lattice of generalized Lsubgroups, Proceedings of The
International Conference on Algebra and Number Theory, Samsun, Turcia, 2014.
 D. Bayrak, S. Yamak, A note on the lattice of TLsubmodules of a module,
Annals Fuzzy Math. Inform., vol. 10 (2015), no. 2, 323330.
 F.B. Bergamaschi, Strong primeness in fuzzy environment,
Ph. D. Thesis, Federal University of Rio Grande, Brazil, 2015.
 D. Bayrak, S. Yamak, Distributivity and pseudocomplementation of lattices of generalized Lsubgroups,
Int. J. of Algebra and Statistics, vol. 5 (2016), no. 2, 107114.
 D. Bayrak, S. Yamak, A note on the lattice of fuzzy hyperideals of a hyperring, Afrika Mat., vol 28 (2017), no. 78, 11851192.
 N. Ajmal, N. Sultana, I. Jahan, A characterization of generalized cyclic groups, 2018.

The number of fuzzy subgroups of finite cyclic groups and Delannoy numbers, European J. Combin., vol. 30 (2009), no. 1, 283287, MR 2460233 (2009i:20135), ZBL 1161.20059
(pdf), cited by:
 B.B. Makamba, V. Murali, Preferential normal fuzzy subgroups, Inform.
Sci., vol. 180 (2010), no. 24, 51255129.
 Z. Wang, L. Shu, Several equivalent conditions of fuzzy subgroups of some
groups, Fuzzy Inform. Engineering, Adv. Soft Comput., Springer, vol. 78 (2010), 4147, doi:
10.1007/9783642148804_5.
 R. Sulaiman, Abd. G. Ahmad, The number of fuzzy subgroups of
finite cyclic groups, Int. Math. Forum, vol. 6 (2011), no. 20, 987994.
 R. Sulaiman, Abd. G. Ahmad, The number of fuzzy subgroups of
a group defined by a presentation, Int. J. Algebra, vol. 5 (2011), no. 8, 375382.
 J.S. Caughman, C.L. Dunn, N.A. Neudauer, C.L. Starr, Counting
lattice chains and Delannoy paths in higher dimensions, Discrete Math., vol. 311 (2011), no. 16,
18031812.
 J.M. Oh, The number of chains of subgroups of a finite cyclic group,
European J. Combin., vol. 33 (2012), no. 2, 259266.
 R. Sulaiman, Constructing fuzzy subgroups of symmetric groups S_4,
Int. J. Algebra, vol. 6 (2012), no. 1, 2328.
 R. Sulaiman, Fuzzy subgroups computation of finite group by using their lattices,
Int. J. Pure Appl. Math., vol. 78 (2012), no. 4, 479489.
 B. Davvaz, R.K. Ardekani, Counting fuzzy subgroups of a special class of
nonabelian groups of order p^3, Ars Combin., vol. 103 (2012), 175179.
 J. Recasens, Permutable indistinguishability operators, perfect fuzzy groups and fuzzy
subgroups, Inform. Sci., vol. 196 (2012), 129142.
 J.M. Oh, The number of chains of subgroups of a finite dihedral group, 2012.
 J.M. Oh, Enumeration of chains of subgroups in the lattice of subgroups of
the dihedral group, 2012.
 B. Davvaz, R.K. Ardekani, Classifying fuzzy subgroups of dicyclic
groups, J. Mult.Valued Logic Soft Comput., vol. 20 (2013), no. 56, 507525.
 H. Darabi, M. Imanparast, Counting number of fuzzy subgroups of
some of dihedral groups, Int. J. Pure Appl. Math., vol. 85 (2013), no. 3, 563575.
 M. Imanparast, H. Darabi, A recursive formula for the number of
fuzzy subgroups of finite cyclic groups, J. Adv. Comput. Research, vol. 4 (2013), no. 1, 5563.
 B. Davvaz, R.K. Ardekani, Counting fuzzy subgroups of nonabelian groups of
order p^3 and 2^4, J. Mult.Valued Logic Soft Comput., vol. 21 (2013), no. 56, 479492.
 H. Darabi, F. Saeedi, M. Farrokhi D.G., The number of fuzzy
subgroups of some nonabelian groups, Iran. J. Fuzzy Syst., vol. 10 (2013), no. 6, 101107.
 A. Sehgal, P.K. Sharma, On the number of fuzzy subgroups of a finite cyclic group,
Proceeding of National Conference on Advances in Mathematics and its Applications, India, 2013, 293298.
 A.M. Ibraheem, Counting fuzzy subgroups of Z_2^n by lattice subgroups,
Eng. & Tech. Journal, vol. 32 (2014), no. 2, 360369.
 R. Sulaiman, B.P. Prawoto, Computing the number of fuzzy subgroups by expansion method,
Int. Electron. J. Pure Appl. Math., vol. 8 (2014), no. 4, 5358.
 S.A. Adebisi, The classification of the fuzzy subgroups for a class of
finite nilpotent groups, 2015.
 R. Sulaiman, The symmetry property for the number of fuzzy subgroups of rectangle groups,
Int. Math. Forum, vol. 11 (2016), no. 2, 5560.
 J. Engbers, C. Stocker, Two combinatorial proofs of identities involving powers
of binomial coefficients, Integers, vol. 16 (2016), A58.
 B. Davvaz, R.K. Ardekani, Counting fuzzy normal subgroups of nonabelian finite groups,
J. Mult.Valued Logic Soft Comput., vol. 28 (2017), no. 6, 571590.
 A. Sehgal, M. Jakhar, The number of fuzzy subgroups for finite abelian pgroup of rank three,
Adv. Fuzzy Math., vol. 12 (2017), no. 4, 10351045.
 R.K. Ardekani, B. Davvaz, Classifying fuzzy subgroups and fuzzy normal subgroups of the group
D_{2p} × Z_q and finite groups of order n <= 20, J. Intell. Fuzzy Syst., vol. 33
(2017), no. 6, 36153627.
 J. Engbers, C. Stocker, Combinatorial proofs of identities of Alzer and Prodinger and some generalizations,
Integers, vol. 18 (2018), A49.
 M. Benoumhani, A. Jaballah, Chains in lattice of mappings and finite fuzzy topological spaces,
J. Combin. Theory, Series A, vol. 161 (2019), 99111.

Finite groups determined by an inequality of the orders of their subgroups (with T. De Medts), Bull. Belg. Math. Soc. Simon Stevin, vol. 15 (2008), no. 4, 699704, MR 2475493 (2009j:20033), ZBL 1166.20017
(pdf), cited by:
 A. Maróti, Perfect numbers and finite groups, University of Padova,
Padova, Italy, 2011.
 T. De Medts, A. Maróti, Perfect numbers and finite groups, Rend.
Semin. Mat. Univ. Padova, vol. 129 (2013), 1733.
 H. Khosravi, H. Golmakani, Modeling of some concepts from
number theory to group theory, Int. Res. J. Pure Algebra, vol. 3 (2013), no. 8, 282285.
 S.J. Baishya, A.K. Das, Harmonic numbers and finite groups,
Rend. Semin. Mat. Univ. Padova, vol. 132 (2014), 3343.
 S.J. Baishya, Revisiting the Leinster groups,
C. R. Math. Acad. Sci. Paris, vol. 352 (2014), no. 1, 16.
 H. Khosravi, On the perfect and superperfect groups,
Int. J. Math. Archive, vol. 5 (2014), no. 7, 151154.
 H. Khosravi, E. Faryad, Amicable numbers and groups, Int. Research J. Pure Algebra,
vol. 4 (2014), no. 10, 593598.
 H. Khosravi, E. Faryad, Amicable numbers and groups, II,
Int. J. Math. Trends Tech., vol. 14 (2014), no. 1, 4045.
 M. Maj, Recognize some structural properties of a finite group from the orders of its elements,
Cemal Koç  Algebra Days, Middle East Technical University of Ankara, Turkey, 2016.
 M. Garonzi, M. Patassini, Inequalities detecting structural properties of a
finite group, Comm. Algebra, vol. 45 (2017), no. 2, 677687.
 H. Khosravi, H. Golmakani, The results of the new classification of finite groups,
Adv. Appl. Math. Sci., vol. 16 (2017), no. 7, 235243.
 M. Herzog, P. Longobardi, M. Maj, Properties of finite and periodic groups determined by their element orders,
Group Theory and Computation, Springer, 2018, 5990.

An Elattice structure associated to some classes of finite groups, Fixed Point Theory, vol. 9 (2008), no. 2, 575583, MR 2464137 (2009j:06011), ZBL 1176.06008
(pdf).

A note on the number of fuzzy subgroups of finite groups (with L. Bentea), Sci. An. Univ. "Al. I. Cuza" Iaşi, ser. Math., tome LIV (2008), fasc. 1, 209220, MR 2429116 (2009f:20103), ZBL 1158.20039
(pdf), cited by:
 J.M. Oh, Fuzzy subgroups of the direct product of a generalized quaternion group
and a cyclic group of any odd order, Iran. J. Fuzzy Syst., vol. 10 (2013), no. 5, 97112.
 N. Kumar, A. Sehgal, S. Sehgal, P.K. Sharma, Quadratic form of subgroups of a finite abelian
pgroup of rank two, Ann. Pure Appl. Math., vol. 10 (2015), no. 2, 165167.
 S.A. Adebisi, The classification of the fuzzy subgroups for a class of
finite nilpotent groups, 2015.
 A. Sehgal, S. Sehgal, M. Jakhar, P.K. Sharma, Quadratic form of automorphism of a finite abelian
pgroup of rank two, Adv. Algebra, vol. 9 (2016), no. 1, 1721.
 B. Davvaz, R.K. Ardekani, Counting fuzzy normal subgroups of nonabelian finite groups,
J. Mult.Valued Logic Soft Comput., vol. 28 (2017), no. 6, 571590.
 R.K. Ardekani, B. Davvaz, Classifying fuzzy subgroups and fuzzy normal subgroups of the group
D_{2p} × Z_q and finite groups of order n <= 20, J. Intell. Fuzzy Syst., vol. 33
(2017), no. 6, 36153627.

Counting subgroups for a class of finite nonabelian pgroups, Sci. An. Univ. Timişoara, ser. Math.Inform., tome XLVI (2008), fasc. 1, 147152, MR 2791473, ZBL 1199.20020
(pdf), cited by:
 M. Enioluwafe, Counting subgroups of finite nonmetacyclic 2groups
having no elementary abelian subgroup of order 8, IOSR J. Math., vol. 10 (2014), no. 5, 3132.
 C. Shao, Q. Jiang, Finite groups whose set of numbers of subgroups of possible order has
exactly 2 elements, Czech. Math. J., vol. 64 (2014), no. 3, 827831.
 M. Enioluwafe, Counting subgroups of nonmetacyclic groups of type D_{2^{n1}} × C_2, n >= 3,
IMHOTEP  Math. Proc., vol. 2 (2015), no. 1, 2527.
 S.M. Jafarian Amiri, H. Madadi, H. Rostami, On 10centralizer groups, 2015.
 O.O. Oluwafunmilayo, M. Enioluwafe, On counting subgroups for a class of finite nonabelian pgroups and related problems,
IMHOTEP  Math. Proc., vol. 4 (2017), no. 1, 3443.

On the number of fuzzy subgroups of finite abelian groups (with L. Bentea), Fuzzy Sets and Systems, vol. 159 (2008), no. 9, 10841096, MR 2418786 (2009c:20127), ZBL 1171.20043
(pdf), cited by:
 Ho. Naraghi, Ha. Naraghi, A. Iranmanesh, On fuzzy subgroups of finite
pgroups, AAA7676th. Workshop on General Algebra, Linz, Austria, 2008.
 R. Sulaiman, Abd. G. Ahmad, Counting fuzzy subgroups of symmetric groups
S_2, S_3 and alternating group A_4, JQMA, vol. 6 (2010), no. 1, 5763.
 Z. Wang, L. Shu, Several equivalent conditions of fuzzy subgroups of some
groups, Fuzzy Inform. Engineering, Adv. Soft Comput., Springer, vol. 78 (2010), 4147, doi:
10.1007/9783642148804_5.
 R. Sulaiman, Relasi ekuivalensi pada subgrup fuzzy, J. Mat. Stat., vol. 10 (2010),
no. 2, 152159.
 A. Jaballah, F.B. Saidi, Length of maximal chains and number of fuzzy ideals in commutative rings,
J. Fuzzy Math., vol. 18 (2010), no. 3, 743750.
 R. Sulaiman, Abd. G. Ahmad, The number of fuzzy subgroups of
finite cyclic groups, Int. Math. Forum, vol. 6 (2011), no. 20, 987994.
 R. Sulaiman, Abd. G. Ahmad, The number of fuzzy subgroups of
a group defined by a presentation, Int. J. Algebra, vol. 5 (2011), no. 8, 375382.
 S. Jia, Y. Chen, J. Liu, Y. Jiang, On the number of fuzzy subgroups
of finite abelian pgroups with type (p^n, p^m), Proceedings of The
3rd International Conference on Computer Research and Development (ICCRD), China, vol. 4 (2011), 6264, doi:
10.1109/ICCRD.2011.5763854.
 O. Ndiweni, B.B. Makamba, Distinct fuzzy subgroups of some dihedral
groups, Adv. Fuzzy Sets Syst., vol. 9 (2011), no. 1, 6591.
 A. Iranmanesh, H. Naraghi, The connections between some equivalence
relations on fuzzy subgroups, Iran J. Fuzzy Syst., vol. 8 (2011), no. 5, 6980.
 J.M. Oh, The number of chains of subgroups of a finite cyclic group,
European J. Combin., vol. 33 (2012), no. 2, 259266.
 R. Sulaiman, Constructing fuzzy subgroups of symmetric groups S_4,
Int. J. Algebra, vol. 6 (2012), no. 1, 2328.
 R. Sulaiman, Subgroups lattice of symmetric group S_4, Int. J. Algebra,
vol. 6 (2012), no. 1, 2935.
 R. Sulaiman, Fuzzy subgroups computation of finite group by using their lattices,
Int. J. Pure Appl. Math., vol. 78 (2012), no. 4, 479489.
 Y. Chen, Y. Jiang, S. Jia, On the number of fuzzy subgroups of finite
abelian pgroups, Int. J. Algebra, vol. 6 (2012), no. 5, 233238.
 M.O. Massa'deh, Some structure properties of anti LQfuzzy and normal fuzzy
subgroups, Asian J. Algebra, vol. 5 (2012), no. 1, 2127.
 B. Davvaz, R.K. Ardekani, Counting fuzzy subgroups of a special class of
nonabelian groups of order p^3, Ars Combin., vol. 103 (2012), 175179.
 Ha. Naraghi, Ho. Naraghi, The determination of the number of distinct fuzzy subgroups
of the group Z_{p_1p_2...p_n} and the dihedral group
D_{2p_1p_2...p_n}, IJMA, vol. 3 (2012), no. 4, 17121717.
 O. Ndiweni, B.B. Makamba, Distinct fuzzy subgroups of the dihedral group
D_{p^n}, Pioneer J. Math. Mathematical Sci., vol. 4 (2012), no. 2, 231  244.
 O. Ndiweni, B.B. Makamba, Classification of fuzzy subgroups of a dihedral group of order
2pqr for distinct primes p, q and r, Int. J. Math. Sci. Eng. Appl., vol. 6 (2012), no. 4, 159174.
 B. Humera, Z. Raza, On subgroups lattice of quasidihedral group, Int. J. Algebra,
vol. 6 (2012), no. 25, 12211225.
 J.M. Oh, Y. Kim, K.W. Hwang, The number of chains of subgroups in the lattice of subgroups
of the dicyclic group, Discrete Dynamics in Nature and Society, vol. 2012, article ID760246,
doi:10.1155/2012/760246.
 N. Doda, P.K. Sharma, Different possibilities of fuzzy subgroups of a cyclic group,
I, Adv. Fuzzy Sets Syst., vol. 12 (2012), no. 2, 101109.
 M.O. Massa'deh, On Mfuzzy cosets, Mconjugate of Mupper fuzzy subgroups over
Mgroups, Global J. Pure Applied Math., vol. 8 (2012), no. 3, 295303.
 J.M. Oh, The number of chains of subgroups of a finite dihedral group, 2012.
 J.M. Oh, Enumeration of chains of subgroups in the lattice of subgroups of
the dihedral group, 2012.
 F. Saeedi, T. Rezaiyan, Counting fuzzy subgroups of some abelian pgroups of ranks
2, 3 and 4, 2012.
 B. Humera, Z. Raza, On fuzzy subgroups of finite abelian groups,
Int. Math. Forum, vol. 8 (2013), no. 4, 181190.
 B. Davvaz, R.K. Ardekani, Classifying fuzzy subgroups of dicyclic
groups, J. Mult.Valued Logic Soft Comput., vol. 20 (2013), no. 56, 507525.
 H. Darabi, M. Imanparast, Counting number of fuzzy subgroups of
some of dihedral groups, Int. J. Pure Appl. Math., vol. 85 (2013), no. 3, 563575.
 M.O. Massa'deh, Structure properties of an intuitionistic anti fuzzy
Msubgroups, J. Appl. Compt. Sci. Math., vol. 14 (2013), no. 7, 4244.
 M. Imanparast, H. Darabi, A recursive formula for the number of
fuzzy subgroups of finite cyclic groups, J. Adv. Comput. Research, vol. 4 (2013), no. 1, 5563.
 J.M. Oh, Fuzzy subgroups of the direct product of a generalized quaternion group
and a cyclic group of any odd order, Iran. J. Fuzzy Syst., vol. 10 (2013), no. 5, 97112.
 B. Davvaz, R.K. Ardekani, Counting fuzzy subgroups of nonabelian groups of
order p^3 and 2^4, J. Mult.Valued Logic Soft Comput., vol. 21 (2013), no. 56, 479492.
 H. Darabi, F. Saeedi, M. Farrokhi D.G., The number of fuzzy
subgroups of some nonabelian groups, Iran. J. Fuzzy Syst., vol. 10 (2013), no. 6, 101107.
 J.M. Oh, An explicit formula for the number of fuzzy subgroups of a finite
abelian pgroup of rank two, Iran. J. Fuzzy Syst., vol. 10 (2013), no. 6, 125135.
 N. Doda, P.K. Sharma, Counting the number of intuitionistic fuzzy
subgroups of finite abelian groups of different order, NIFS, vol. 19 (2013), no. 4, 4247.
 A. Sehgal, P.K. Sharma, On the number of fuzzy subgroups of a finite cyclic group,
Proceeding of National Conference on Advances in Mathematics and its Applications, India, 2013, 293298.
 E. Saltürk, The number of fuzzy subgroups and codes with some applications,
Ph. D. Thesis, Yildiz Technical University, Istanbul, Turkey, 2013.
 R. Sulaiman, B.P. Prawoto, The number of fuzzy subgroups of rectangle groups,
Int. J. Algebra, vol. 8 (2014), no. 1, 1723.
 P. Pandiammal, A study on intuitionistic anti Lfuzzy Msubgroups,
IJCOT, vol. 5 (2014), 4352.
 Y. Shabanpour, S. Sedghi, Reconsider on the number of fuzzy
subgroups of finite abelian pgroups, MAGNT Research Report, vol. 2 (2014), no. 7, 5056.
 B.B. Makamba, O. Ndiweni, Distinct fuzzy subgroups of a dihedral group of order
2pqrs for distinct primes p, q, r and s, Iran. J. Fuzzy Syst., vol. 12 (2015), no. 3, 137149.
 A. Sehgal, S. Sehgal, P.K. Sharma, The number of fuzzy subgroups of a finite dihedral
D_{p^mq^n}, Int. J. Fuzzy Math. Archive, vol. 8 (2015), no. 1, 5157.
 A. Sehgal, S. Sehgal, P.K. Sharma, Fuzzy subgroups of a finite abelian group
Z_{p^mq^r} × Z_{p^nq^s},
Proceedings of The 4th International Fuzzy Systems Symposium, Turkey, 2015.
 S.A. Adebisi, The classification of the fuzzy subgroups for a class of
finite nilpotent groups, 2015.
 R. Sulaiman, The symmetry property for the number of fuzzy subgroups of rectangle groups,
Int. Math. Forum, vol. 11 (2016), no. 2, 5560.
 A. Sehgal, S. Sehgal, P.K. Sharma, The number of fuzzy subgroups of a finite abelian pgroup
Z_{p^m} × Z_{p^n}, Adv. Fuzzy Sets Syst., vol. 21 (2016), no. 1, 4957.
 G. Ali, On fuzzy generalizations of some results in finite group theory, Master Degree
Thesis, COMSATS Institute of Information Technology, Lahore, Pakistan, 2016.
 A. Sehgal, S. Sehgal, P.K. Sharma, M. Jakhar, Fuzzy subgroups of a finite abelian group
Z_{p^mq^r} × Z_{p^n}, Adv. Fuzzy Sets Syst., vol. 21 (2016), no. 4, 291302.
 M. Benoumhani, A. Jaballah, Finite fuzzy topological spaces, Fuzzy Sets and Systems,
vol. 321 (2017), 101114.
 I.K. Appiah, B.B. Makamba, Counting distinct fuzzy subgroups of some rank3 abelian groups,
Iran. J. Fuzzy Syst., vol. 14 (2017), no. 1, 163181.
 B. Davvaz, R.K. Ardekani, Counting fuzzy normal subgroups of nonabelian finite groups,
J. Mult.Valued Logic Soft Comput., vol. 28 (2017), no. 6, 571590.
 Chandni, P.K. Sharma, P. Singh, M. Singh, A recursive formula for the number of
intuitionistic fuzzy subgroups of a finite cyclic group, AIP Conference Proceedings 1860, 020033 (2017), doi:
http://dx.doi.org/10.1063/1.4990332.
 A. Sehgal, M. Jakhar, The number of fuzzy subgroups for finite abelian pgroup of rank three,
Adv. Fuzzy Math., vol. 12 (2017), no. 4, 10351045.
 M.E. Ogiugo, M. Enioluwafe, Classifying a class of the fuzzy subgroups of the alternating groups
A_n, IMHOTEP  Math. Proc., vol. 4 (2017), no. 1, 2733.
 R.K. Ardekani, B. Davvaz, Classifying fuzzy subgroups and fuzzy normal subgroups of the group
D_{2p} × Z_q and finite groups of order n <= 20, J. Intell. Fuzzy Syst., vol. 33
(2017), no. 6, 36153627.
 P. Pandiammal, N. Martin, Properties of lower level subsets of
intuitionistic anti Lfuzzy Msubgroups, IJSRSET, vol. 3 (2017), no. 8, 440446.
 M.E. Ogiugo, M. Enioluwafe, On the number of fuzzy subgroups of a symmetric group S_5, 2017.

A new method of proving some classical theorems of abelian groups, Southeast Asian Bull. Math., vol. 31 (2007), no. 6, 11911203, MR 2386997 (2009a:20090), ZBL 1145.20313
(pdf), cited by:
 M. Hampejs, L. Tóth, On the subgroups of finite abelian groups of rank three,
Annales Universitatis Scientiarum Budapestinensis, Sect. Comp., vol. 39 (2013), 111124.
 M.A. Bărăscu, Gradings on matrix algebras, Ph.D. Thesis, Faculty of Mathematics and Informatics,
University of Bucharest, 2013.
 N. Holighaus, Theory and implementation of adaptive timefrequency, Ph.D. Thesis,
University of Wien, Austria, 2013.
 W.G. Nowak, L. Tóth, On the average number of subgroups of the group Z_m × Z_n,
Int. J. Number Theory, vol. 10 (2014), 363374.
 M. Hampejs, N. Holighaus, L. Tóth, C. Wiesmeyr, Representing and counting the subgroups of the
group Z_m × Z_n, J. Numbers, vol. 2014, article ID 491428.
 C.Y. Chew, A.Y.M. Chin, C.S. Lim, The number of subgroups of a direct product of cyclic pgroups,
2015.
 B. Davvaz, R.K. Ardekani, Counting fuzzy normal subgroups of nonabelian finite groups,
J. Mult.Valued Logic Soft Comput., vol. 28 (2017), no. 6, 571590.
 L. Tóth, W. Zhai, On the error term concerning the number of
subgroups of the groups Z_m × Z_n with m, n <= x, Acta Arithm., vol. 183 (2018), no. 3, 285299.

Elattices, Ital. J. Pure Appl. Math., vol. 22 (2007), 2738, MR 2360994 (2009a:06015), ZBL 1175.06001
(pdf).

On the poset of conjugacy classes of subgroups of groups, Adv. Abstract Algebra, I. Tofan, M. Gontineac, M. Tărnăuceanu eds., Ed. Al. Myller, Iaşi, 2007, 103122
(pdf).

On isomorphisms of canonical Elattices, Fixed Point Theory, vol. 8 (2007), no. 1, 131139, MR 2309287 (2008a:08001), ZBL 1123.06004
(pdf).

Complementation in normal subgroup lattices, Sci. An. USAMV Iaşi, tome XLIX (2006), vol. 2, 285302, MR 2379318 (2008m:20039), ZBL 1167.20316
(pdf).

Complementation in subgroup lattices, Sci. An. USAMV Iaşi, tome XLIX (2006), vol. 2, 303321, MR 2379317 (2008m:20038), ZBL 1167.20315
(pdf).

On the subgroup lattice of an abelian finite group, Ratio Math., no. 15 (2006), 6574
(pdf).

On finite groups without normal subgroups of the same order, Mem. Secţ. Ştiinţ. Acad. Română, tome XXVIII (2005), 1720, MR 2360443 (2008i:20023)
(pdf).

A note on Udecomposable groups, Sci. An. USAMV Iaşi, tome XLVIII (2005), vol. 2, 409412, MR 2397193 (2009a:20035), ZBL 1168.20305
(pdf).

Pseudocomplemented groups, Sci. An. Univ. "Al. I. Cuza" Iaşi, ser. Math., tome LI (2005), fasc. 1, 201206, MR 2187369 (2006i:20020), ZBL 1109.20018
(pdf).

On the group of autoprojectivities of an abelian pgroup, Current Research Math. Fuzzy Systems, E. Cortellini, H.N. Teodorescu, I. Tofan, A.C. Volf eds., Ed. Panfilius, Iaşi, 2005, 9396
(pdf).

Udecomposable groups, Sci. An. USAMV Iaşi, tome XLVII (2004), vol. 2, 229236, MR 2148117
(pdf).

On groups whose lattices of subgroups are pseudocomplemented, Fuzzy Systems & Artificial Intelligence, vol. 10 (2004), no. 2, 4549
(pdf).

A note on fundamental group lattices, Current Topics Compt. Sci., F. Eugeni, H. Luchian eds., Ed. Panfilius, Iaşi, 2004, 109114
(pdf).

Elementary nonCLT groups of order pq^n, Current Topics Compt. Sci., F. Eugeni, H. Luchian eds., Ed. Panfilius, Iaşi, 2004, 105108
(pdf).

Latticeal representations of groups, Sci. An. Univ. "Al. I. Cuza" Iaşi, ser. Math., tome L (2004), fasc. 1, 1931, MR 2129028 (2006e:20029), ZBL 1078.20027
(pdf).

On the groups associated to genetic recombinations, Sci. An. USAMV Iaşi, tome XLVI (2003), vol. 2, 165170, MR 2149041, ZBL 1168.20311
(pdf).

Special classes of hypergroup representations, Ital. J. Pure Appl. Math., vol. 14 (2003), 213218, MR 2073562, ZBL 1149.20305
(pdf), cited by:
 Y. Feng, The Lfuzzy hyperstructures (X, ∧' , ∨')
and (X, ∨' , ∧'), Ital. J. Pure Appl. Math., vol. 26 (2009), 159170.

Fundamental group lattices, Current Research Compt. Sci., Theory and Applications, F. Eugeni, H. Luchian eds., Ed. Panfilius, Iaşi, 2003, 117126
(pdf).

Actions of groups on lattices, Sci. An. Univ. "Ovidius" Constanţa, ser. Math., vol. X (2002), fasc. 1, 135148, MR 2070193 (2005b:05220), ZBL 1058.05069
(pdf), cited by:
 V. LeoreanuFotea, B. Davvaz, F. Feng, C. Chiper, Join spaces, soft
join spaces and lattices, Sci. An. Univ. "Ovidius" Constanţa, ser. Math., vol. XXII (2014), fasc. 1, 155167.

On the subgroup lattice of a semidirect product of finite cyclic groups, Mem. Secţ. Ştiinţ. Acad. Română, tome XXV (2002), 219228, MR 2150333 (2006h:20037)
(pdf), cited by:
 O.O. Oluwafunmilayo, M. Enioluwafe, On counting subgroups for a class of finite nonabelian pgroups and related problems,
IMHOTEP  Math. Proc., vol. 4 (2017), no. 1, 3443.

Some properties of the divisible rings, Scr. Sci. Math., vol. II, fasc. 1, Chişnău, 2002, 172180
(pdf).

Nonunits ideals in algebraic function field, Scr. Sci. Math., vol. II, fasc. 1, Chişnău, 2002, 180190
(pdf).

A property of the functors Tor and Ext, Sci. An. Univ. "Ovidius" Constanţa, ser. Math., vol. VII (1999), fasc. 2, 6979, MR 1979154 (2004a:16012), ZBL 1034.16500
(pdf).
