Finite groups with a certain number of values of the Chermak–Delgado measure

Marius Tărnăuceanu
Faculty of Mathematics, “Al.I. Cuza” University
Iași, Romania
tarnauc@uaic.ro

Received 16 March 2019
Accepted 18 March 2019
Published 9 May 2019

Communicated by M. L. Lewis

In this paper, we study the finite groups whose Chermak–Delgado measure has exactly \(k \) values. We will focus especially on the case \(k = 2 \). These groups determine an interesting class of \(p \)-groups containing cyclic groups of prime order and extraspecial \(p \)-groups.

Keywords: Chermak–Delgado measure; Chermak–Delgado lattice; subgroup lattice; generalized quaternion 2-group; extraspecial \(p \)-group; outer abelian \(p \)-group; \(p \)-group of maximal class.

Mathematics Subject Classification 2020: 20D30, 20D60, 20D99

1. Introduction

Throughout this paper, let \(G \) be a finite group and \(L(G) \) be the subgroup lattice of \(G \). Denote by

\[
m_G(H) = |H||C_G(H)|
\]

the Chermak–Delgado measure of a subgroup \(H \) of \(G \) and let

\[
m^*(G) = \max\{m_G(H) \mid H \leq G\} \quad \text{and} \quad \mathcal{CD}(G) = \{H \leq G \mid m_G(H) = m^*(G)\}.
\]

Then the set \(\mathcal{CD}(G) \) forms a modular, self-dual sublattice of \(L(G) \), which is called the Chermak–Delgado lattice of \(G \). It was first introduced by Chermak and Delgado [7], and revisited by Isaacs [9]. In the last years, there has been a growing interest in understanding this lattice (see e.g. [8–13, 15, 18, 20]). We recall several important properties of the Chermak–Delgado measure that will be used in our paper:

- if \(H \leq G \), then \(m_G(H) \leq m_G(C_G(H)) \), and if the measures are equal then \(C_G(C_G(H)) = H \);
M. Tărnăveanu

- if \(H \in \text{CD}(G) \), then \(C_G(H) \in \text{CD}(G) \) and \(C_G(C_G(H)) = H \);
- the minimum subgroup \(M(G) \) of \(\text{CD}(G) \) (called the Chermak–Delgado subgroup of \(G \)) is characteristic, abelian, and contains \(Z(G) \).

We remark that the Chermak–Delgado measure associated to a finite group \(G \) can be seen as a function

\[
m_G : L(G) \to \mathbb{N}^*, \quad H \mapsto m_G(H), \quad \forall H \in L(G).
\]

The starting point for our discussion is given by [16, Corollary 3], which states that there is no finite nontrivial group \(G \) such that \(\text{CD}(G) = L(G) \). In other words, \(m_G \) has at least two distinct values for every finite nontrivial group \(G \). This leads to the following natural question:

Given an integer \(k \geq 2 \), which are the finite groups \(G \) whose Chermak–Delgado measure \(m_G \) has exactly \(k \) values?

The paper is organized as follows. In Sec. 2, we present some general results on the above groups. Section 3 deals with the case \(k = 2 \). In the final section, some further research directions are indicated.

We recall several basic definitions:

- a generalized quaternion 2-group is a group of order \(2^n \), \(n \geq 3 \), defined by the presentation
 \[
 Q_{2^n} = \langle a, b \mid a^{2^{n-1}} = 1, a^{2^{n-2}} = b^2, b^{-1}ab = a^{-1} \rangle;
 \]
- a finite \(p \)-group \(G \) is said to be extraspecial if \(Z(G) = G' = \Phi(G) \) has order \(p \);
- a finite \(p \)-group \(G \) is said to be outer abelian if \(G \) is non-abelian, but every proper quotient group of \(G \) is abelian;
- a finite \(p \)-group \(G \) of order \(p^n \) is said to be of maximal class if the nilpotence class of \(G \) is \(n - 1 \).

The following well-known facts on \(p \)-groups will be useful to us. The first two appear in [14, Eqs. (4.26) and (4.4)], the third in [19, Corollary 10], while the fourth in [11, Proposition 1.8].

- Any group of order \(p^4 \) contains an abelian subgroup of order \(p^3 \).
- A finite \(p \)-group \(G \) has a unique subgroup of order \(p \) if and only if either it is cyclic or \(p = 2 \) and \(G \cong Q_{2^n} \) for some \(n \geq 3 \).
- A finite \(p \)-group \(G \) is outer abelian if and only if \(|G'| = p \) and \(Z(G) \) is cyclic, and \(G \) is one of the following non isomorphic groups:
 1. \(M(n, 1) = \langle a, b \mid a^{p^n} = b^p = 1, a^b = a^{1+p^{n-1}} \rangle, n \geq 3 \);
 2. an extraspecial \(p \)-group;
 3. \(G = E \ast A \), where \(E \) is an extraspecial \(p \)-group and \(A \cong M(n, 1), n \geq 3 \);
 4. \(G = E \ast A \), where \(E \) is an extraspecial \(p \)-group and \(A \cong C_{p^t}, t \geq 2 \).
- A finite \(p \)-group \(G \) is of maximal class if and only if it has a subgroup \(A \) of order \(p^2 \) such that \(C_G(A) = A \).
2. Some General Results

First of all, we indicate a lower bound for the number of values of the Chermak–Delgado measure associated to a finite group.

Theorem 2.1. Let G be a finite group. For each prime p dividing the order of G and $P \in \text{Syl}_p(G)$, let $|Z(P)| = p^{n_p}$. Then

$$|\text{Im}(m_G)| \geq 1 + \sum_p n_p. \quad (1)$$

Proof. Let p be a prime dividing the order of G and $P \in \text{Syl}_p(G)$ with $|P| = p^{m_p}$ and $|Z(P)| = p^{n_p}$. For each such p and each i, $1 \leq i \leq n_p$, there is a subgroup $H_{p,i} \leq Z(P)$ with $|H_{p,i}| = p^i$. Since $P \subseteq C_G(H_{p,i})$, it follows that the exponent of p in $m_G(H_{p,i})$ is $i + m_p$, and so $m_G(H_{p,i}) \neq m_G(H_{p,j})$ for $i \neq j$. We also observe that we have $m_G(H_{p,i}) \neq m_G(H_{p,j})$ for $p_1 \neq p_2$. Then $\text{Im}(m_G)$ has at least $1 + \sum_p n_p$ distinct elements, namely $m_G(1)$ and $m_G(H_{p,i})$, where p runs over all prime divisors of $|G|$ and $i = 1, 2, \ldots, n_p$. This completes the proof. \qed

Note that for a p-group G we have equality in (1) if and only if $G \in \text{CD}(G)$. This happens for large classes of p-groups, such as for all abelian p-groups. Assume now that $|G| = p_1^{m_{p_1}} p_2^{m_{p_2}} \cdots p_k^{m_{p_k}}$ with $k \geq 2$ and that equality occurs in Eq. (1). Then either $m_G(G) = m_G(1)$ or there are $i \in \{1, \ldots, k\}$ and $1 \leq j \leq n_{p_i}$ such that $m_G(G) = m_G(H_{p,i,j})$. These conditions easily lead to $Z(G) = 1$ or $Z(G) = H_{p,i,j}$. We observe that none of them assure the equality in Eq. (1), as show the examples $G = S_4$ and $G = D_{12}$, respectively. We are also able to give several examples of non-p-groups where equality occurs in Eq. (1), such as A_4 and all non-abelian groups of order pq with p, q distinct primes.

The following theorem gives a precise formula of computing $|\text{Im}(m_G)|$ for finite abelian groups G.

Theorem 2.2. Let G be a finite abelian group of order n. Then

$$|\text{Im}(m_G)| = \tau(n),$$

where $\tau(n)$ denotes the number of divisors of n.

Proof. Let H be a subgroup of order d of G. Then

$$m_G(H) = |H||C_G(H)| = |H||G| = dn$$

and $d \mid n$. Conversely, let d be a divisor of n. Since G is abelian, we infer that there is a subgroup $H \leq G$ such that $|H| = d$, and so $m_G(H) = dn$. Thus,

$$\text{Im}(m_G) = \{dn : d \mid n\},$$

which implies that

$$|\text{Im}(m_G)| = \tau(n),$$

as desired. \qed
We remark that Theorem 2.2 can be used to determine all finite abelian groups G whose Chermak–Delgado measure has a small number of values.

Corollary 2.3. Let G be a finite abelian group with $|\text{Im}(m_G)| = k$.

(a) If $k = 2$, then $G \cong C_p$ for some prime p.

(b) If $k = 3$, then either $G \cong C_{p^2}$ or $G \cong C_p \times C_p$ for some prime p.

3. The Case $k = 2$

In this section, we study the class C of finite groups G whose Chermak–Delgado measure m_G has exactly two values. Note that the abelian groups in C have been determined in the above corollary. We easily infer that C is not closed under subgroups, homomorphic images, direct products or extensions. Also, by Theorem 2.1 one obtains that.

Proposition 3.1. All groups in C are p-groups with center of order p.

Since our study can be reduced to p-groups and it is completely finished for abelian groups, in what follows, we will suppose that G is a non-abelian p-group of order p^n ($n \geq 3$) belonging to C. Then:

(a) $G \in \mathcal{C}(G)$;

(b) $\text{Im}(m_G) = \{p^n, p^{n+1}\}$, and consequently $m^*(G) = p^{n+1}$;

(c) $Z(G)$ is the unique minimal normal subgroup of G, and consequently $Z(G) \subseteq G' \subseteq \Phi(G)$;

(d) $HZ(G) \in \mathcal{C}(G)$, $\forall H \leq G$ satisfying $Z(G) \not\subseteq H$.

If $Z(G) \nsubseteq H$, then $H \not\in \mathcal{C}(G)$. Since $C_G(H) = C_G(HZ(G))$, it follows that $m_G(H) \neq m_G(HZ(G))$, and consequently $HZ(G) \in \mathcal{C}(G)$.

There are many examples of finite non-abelian p-groups G such that $\mathcal{C}(G) = \{Z(G), G\}$ (see e.g. [5, Corollary 2.2 and Proposition 2.3]). Using Corollary 2.3(a), and the above item (d), we are able to prove that the intersection between this class of groups and C is empty.

Corollary 3.2. C does not contain non-abelian p-groups G with $\mathcal{C}(G) = \{Z(G), G\}$.

Proof. Assume that C contains a non-abelian p-group G satisfying $\mathcal{C}(G) = \{Z(G), G\}$.

If G possesses a minimal subgroup $H \neq Z(G)$, then $HZ(G) \in \mathcal{C}(G)$ by (d). On the other hand, we obviously have $HZ(G) \neq Z(G)$, and since $\mathcal{C}(G) = \{Z(G), G\}$, we get $HZ(G) = G$. Then $|G| = p^2$, implying that G is abelian, a contradiction.

If $Z(G)$ is the unique subgroup of order p in G, then G is a generalized quaternion 2-group, i.e. $p = 2$ and

$$G \cong Q_{2n} = \langle a, b \mid a^{2^{n-1}} = 1, a^{2^{n-2}} = b^2, b^{-1} ab = a^{-1} \rangle$$

for some $n \geq 3$.

2050088-4
It results that G has a cyclic maximal subgroup $H \cong \langle a \rangle$. So,

$$m_G(H) = 2^{2n-2} \leq 2^{n+1} = m^*(G),$$

which means $n \leq 3$. Since G is non-abelian, we get $n = 3$, that is $G \cong Q_8$. Then $\mathcal{CD}(G)$ is a quasi-antichain of width 3, contradicting the hypothesis.

Next, we will focus on giving examples of non-abelian p-groups in C.

Theorem 3.3. All extraspecial p-groups are contained in C.

Proof. Let G be an extraspecial p-group. It is well known that $\mathcal{CD}(G)$ consists of all subgroups H of G containing $Z(G)$ (see e.g. [8] Example 2.8 or [17] Theorem 4.3.4). Consequently, all these subgroups have the same Chermak–Delgado measure. On the other hand, by [2, Lemma 2.6] any subgroup H of G with $Z(G) \not\subseteq H$ satisfies $m_G(H) = |G|$. Thus the function m_G has exactly two values, as desired.

Using GAP, we are also able to give an example of a nonextraspecial non-abelian p-group in C, namely SmallGroup(32,8):

$$G = \langle a, b, c | a^4 = 1, b^4 = a^2, c^2 = bab^{-1} = a^{-1}, ac = ca, cbc^{-1} = a^{-1}b^3 \rangle.$$

Note that the nilpotence class of G is 3. Also, $\mathcal{CD}(G)$ is described in [17, Lemma 4.5.16 and Corollaries 4.5.20 and 4.5.21].

We observe that all non-abelian groups of order p^3 belong to C because they are extraspecial. The same thing cannot be said about non-abelian groups of order p^4: such a group G has an abelian subgroup A of order p^3, and so

$$m^*(G) \geq m_G(A) = p^6 > p^5,$$

implying that G is not contained in C. This argument can be extended in the following way.

Proposition 3.4. If a non-abelian group of order p^n contains an abelian subgroup of order $\geq p^{\left\lceil \frac{n-1}{2} \right\rceil}$, then it does not belong to C.

From Proposition 3.4 we easily infer that certain groups does not belong to C. For example, no group of order 64 is contained in C because such a group possesses an abelian subgroup of order 16. Another interesting application of Proposition 3.4 is the following.

Theorem 3.5. Let G be a finite p-group of nilpotence class 2 contained in C. Then G is extraspecial.

Proof. Since the nilpotence class of G is 2, we have that $G/Z(G)$ is abelian and so $G' \subseteq Z(G)$. By Proposition 3.1 we get $G' = Z(G)$, which implies that G is an outer abelian p-group. Then G belongs to one of the four classes of groups (1)–(4) described in Sec. 1.
We observe that $M(n,1)$ has a cyclic subgroup of order p^n, namely $\langle a \rangle$, and $n \geq \left\lceil \frac{m+4}{2} \right\rceil$ for $n \geq 3$. Thus, it cannot be contained in C by Proposition 3.4. Also, it is easy to see that a central product $E * A$, where E is an extraspecial p-group of order p^{2m+1} and $A \cong M(n,1)$, $n \geq 3$, always has an abelian subgroup of order $p^n + n$. Since $m + n \geq \left\lceil \frac{2m+n+4}{2} \right\rceil$ for $n \geq 3$, by Proposition 3.4, we infer that $E * A$ does not belong to C. Similarly, a central product $E * A$, where E is an extraspecial p-group of order p^{2m+1} and $A \cong C_{p^t}$ with $t \geq 2$, always has an abelian subgroup of order p^{m+t}. If $t \geq 3$ then $m + t \geq \left\lceil \frac{2m+n+4}{2} \right\rceil$, implying that $E * A$ is not contained in C. If $t = 2$, it suffices to observe that the center of $E * A$ is of order p^2, and consequently $E * A$ is not contained in C by Proposition 3.1. These shows that the unique possibility is that G be an extraspecial p-group, as desired.

Our last result shows that the non-abelian groups of order p^3 are in fact the unique p-groups of maximal class in C.

Theorem 3.6. Let G be a finite p-group of maximal class contained in C. Then G is non-abelian of order p^3.

Proof. Obviously, G is non-abelian. Let $|G| = p^n$. We know that G possesses a subgroup A of order p^2 such that $C_G(A) = A$. It follows that $m_G(A) = p^4$, and therefore, we have either $n = 3$ or $n = 4$. Since the case $n = 4$ is impossible, we get $n = 3$, as desired.

4. Further Research

We end our paper by indicating three natural open problems concerning the above results.

Problem 1. Which are the pairs (p, n), where p is a prime and n is a positive integer, such that C contains groups of order p^n?

Note that all pairs (p, n) with n odd satisfy this property by Corollary 2.3(a), and Theorem 5.3.

Problem 2. Study the class C' of finite groups G whose Chermak–Delgado measure m_G has exactly three values.

We know that C' contains all abelian p-groups of order p^2 by Corollary 2.3(b); it also contains several classes of non-abelian groups, such as the non-abelian groups of order pq (p, q primes), and in particular the dihedral groups D_{2p} with p an odd prime.

Problem 3. Given a finite group G, we consider the natural action of Aut(G) on $L(G)$ and denote by k the number of distinct orbits. Since every two subgroups in the same orbit have the same Chermak–Delgado measure, we have

$$|\text{Im}(m_G)| \leq k. \quad (2)$$

Determine the finite groups G for which equality occurs in (2).
Clearly, cyclic groups satisfy this property. Note that there are also examples of noncyclic groups satisfying it, such as elementary abelian p-groups.

Acknowledgments

The author is grateful to the reviewer for remarks which improve the previous version of the paper.

References