A note on U-decomposable groups

Marius Tǎrnǎuceanu
Faculty of Mathematics
"Al.I. Cuza" University
Iaşi, Romania
e-mail: tarnauc@uaic.ro

Abstract

The starting point for our discussion is given by the paper [5], where there is introduced the class of U-decomposable groups. Some general results related to these groups are also presented in [5]. The aim of the present paper is to complete these results by obtaining a characterization of U-decomposable abelian p-groups.

Keywords: subgroups, U-decomposable groups, elementary abelian p-groups.

1 Preliminaries

We say that a group (G, \cdot, e) is U-decomposable, if there exists a finite family of proper subgroups $(H_i)_{i=1}^n$ of G (called a U-decomposition of G) such that:

i) $G = \bigcup_{i=1}^n H_i$;

ii) $H_i \cap H_j = \{e\}$, for any $i, j = 1, n$ with $i \neq j$.

Otherwise we say that G is U-indecomposable.

We proved in Corollary 2, [5], that a finite nilpotent group is U-decomposable, if and only if it is a U-decomposable p-group, therefore it is essential to study the decomposability of p-groups. With respect to these groups
we obtained that if \(G \) is a \(U \)-decomposable \(p \)-group and \((H_i)_{i=1}^m\) is a \(U \)-decomposition of \(G \) having the property that there exists \(i_0 \in \{1, 2, ..., n\} \) such that \(\Phi(G) \subseteq H_{i_0} \), then all nontrivial elements in \(G \) are of order \(p \) or \(Z(G) \) is an elementary abelian \(p \)-group (see Proposition 4, [5]).

2 Main results

Proposition 1. Let \(G \) be a noncyclic abelian \(p \)-group. Then the following conditions are equivalent:

a) \(G \) is \(U \)-decomposable.

b) \(G \) is an elementary abelian \(p \)-group.

Proof. b) \(\implies \) a) Obvious (see Example 1, [5]).

a) \(\implies \) b) From the fundamental theorem on finitely generated abelian groups, there exist (uniquely determined by \(G \)) the natural numbers \(k, \alpha_1, \alpha_2, ..., \alpha_k \) such that \(k \geq 2, 1 \leq \alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_k \) and \(G \cong \bigoplus_{i=1}^{k} \mathbb{Z}_{p^{\alpha_i}} \).

For each \(i \in \{1, 2, ..., k\} \), let \(\sigma_i : \mathbb{Z}_{p^{\alpha_i}} \rightarrow G \) be the natural map and \(G_i \) be the image of \(\sigma_i \). Then \(G \) is the direct sum of its subgroups \(G_i, i = 1, \ldots, k \). We prove our statement by induction on \(k \).

Suppose that \(k = 2 \) and let \((H_i)_{i=1}^2\) be a \(U \)-decomposition of \(G \). Since \(G_1, G_2 \) are cyclic (and so \(U \)-indecomposable), there exist \(i_1, i_2 \in \{1, 2, ..., n\} \) such that \(i_1 \neq i_2 \) and \(G_1 \subseteq H_{i_1}, G_2 \subseteq H_{i_2} \). Let \(x \in H_{i_1} \setminus G_1 \). Then, writing \(x = x_1 + x_2 \), where \(x_1 \in G_1 \) and \(x_2 \in G_2 \), it obtains \(x - x_1 = x_2 \in H_{i_1} \cap H_{i_2} \), therefore \(x = x_1 \in G_1 \); contradiction. Thus we have \(G_1 = H_{i_1} \) and, in a similar manner, \(G_2 = H_{i_2} \). Moreover, \(H_i \cap G_1 = H_i \cap G_2 = \{e\} \), for any \(i \in \{1, 2, ..., n\} \setminus \{i_1, i_2\} \) (where by \(e \) we denote the identity of \(G \)). First we show that \(\alpha_1 = \alpha_2 \). Indeed, if we assume \(\alpha_1 < \alpha_2 \), then, choosing \(x_0 \) a generator of the cyclic group \(G_i, i = 1, 2 \), it obtains that the element \(x_0 = x_{10} + x_{20} \) is contained in a subgroup \(H_i \) with \(i \neq i_1 \) and \(i \neq i_2 \). It results \(p^{\alpha_1}x_0 \in H_i \cap G_2 \), therefore \(p^{\alpha_1}x_0 = e \); contradiction. Next, we prove that \(\alpha_1 = \alpha_2 = 1 \). If we have \(\alpha_1 = \alpha_2 \geq 2 \), then, considering \(x_{11} \) an element of order \(p^{\alpha_1-1} \) in \(G \), it obtains that there exists \(i \in \{1, 2, ..., n\} \setminus \{i_1, i_2\} \) such that \(x_1 = x_{11} + x_{20} \in H_i \). It follows \(p^{\alpha_1-1}x_1 \in H_i \cap G_2 \) and so \(p^{\alpha_1-1}x_1 = e \); contradiction. Hence \(\alpha_1 = \alpha_2 = 1 \).
Let us suppose the statement to hold for every abelian p-group having $k - 1$ invariant factors and let G be an abelian p-group with k invariant factors. Denoting $G' = \bigoplus_{i=1}^{k-1} G_i$, we have $G = G' \bigoplus G_k$. If $(H_i)_{i=1}^{n}$ is a U-decomposition of G, then there exists $i'_2 \in \{1, 2, \ldots, n\}$ such that $G_k \subseteq H_{i'_2}$.

Case 1. G' is U-indecomposable.

In this situation, we can choose an index $i'_1 \in \{1, 2, \ldots, n\} \setminus \{i'_2\}$ with $G' \subseteq H_{i'_1}$. By a similar reasoning as above, it obtains $G' = H_{i'_1}$, $G_k = H_{i'_2}$ and $H_{i'_1} \cap G' = H_{i'_2} \cap G_k = \{e\}$, for any $i'' \in \{1, 2, \ldots, n\} \setminus \{i'_1, i'_2\}$. Now, following the same steps as in the case $k = 2$, it results $\alpha_{k-1} = \alpha_k = 1$. Hence $\alpha_i = 1$, for any $i = 1, k$.

Case 2. G' is U-decomposable.

In this situation, from the inductive hypothesis, we have $\alpha_1 = \alpha_2 = \cdots = \alpha_{k-1} = 1$. It results that the Frattini subgroup $\Phi(G)$ of G is cyclic of order $p^{\alpha_k - 1}$ and $\Phi(G) \subseteq G_k$. Hence G is an elementary abelian p-group.

From the previous proposition and Corollary 2, [5], it obtains the following result, which gives us a characterization of U-decomposable finite abelian groups.

Corollary. A finite abelian group is U-decomposable, if and only if it is an elementary abelian p-group.

References

