A PROPERTY OF THE FUNCTORS Tor AND Ext

Marius Tărnăuceanu

Faculty of Mathematics
”Al.I. Cuza” University
Iași, Romania
e-mail: martar@mail.math.uaic.ro

Let R be the class of domains R satisfying the property:

* for every injective R-module E and for every multiplicatively closed subset S of R with $1 \in S$, $E/t_S(E)$ is an injective R-module,

where $t_S(E) = \{e \in E \mid (\exists) s \in S$ such that $se = 0\}$. We remark that \mathcal{R} includes the class of the Dedekind rings.

Let R be an element of \mathcal{R}, S be a multiplicatively closed subset of R such that $1 \in S$, $S^{-1}R$ be the ring of quotients associated to R and S and A, B be two R-modules. The main result of the paper states that, if $t_S(B') = 0$ and if for each R-monomorphism $f : B \to B'$ with $t_S(B') = 0$ from $sb' \in f(B)$, $s \in S$, $b' \in B'$ it results $b' \in f(B)$, then we have:

$$S^{-1}\text{Ext}^n_R(A, B) \cong \text{Ext}^n_{S^{-1}R}(S^{-1}A, S^{-1}B).$$

A similar property holds for the functor Tor, i.e.:

$$S^{-1}\text{Tor}_n^R(A, B) \cong \text{Tor}_n^{S^{-1}R}(S^{-1}A, S^{-1}B),$$

in the general case (R is a domain and A, B are two R-modules).

1. Preliminaries

Let R be a domain, S be a multiplicatively closed subset of R with $1 \in S$, $S^{-1}R$ be the ring of quotients associated to R and S, and \mathcal{M}_R, $\mathcal{M}_{S^{-1}R}$ be the categories of R-modules, respectively of $S^{-1}R$-modules.

We remind the necessary notions and results (see also [1] and [2]):

We have a functor $S^{-1} : \mathcal{M}_R \to \mathcal{M}_{S^{-1}R}$ given by:

(i) for an R-module A, $S^{-1}A$ is the module of quotients associated to A and S;

(ii) for an R-morphism $f : A \to B$, $S^{-1}f : S^{-1}A \to S^{-1}B$ is the $S^{-1}B$-morphism defined by:

$$\frac{a}{s} \mapsto \frac{f(a)}{s} \quad (\forall) a \in A, \ (\forall) s \in S.$$
The functor S^{-1} has the following properties:

(a) it is an exact functor;
(b) for an R-module A, we have $S^{-1}A \cong S^{-1}R \otimes_R A$;
(c) for an R-module A, and for an R-submodule A' of A we have

(1) $S^{-1}(A/A') \cong S^{-1}A/S^{-1}A'$;
(d) if A and B are two R-modules then

$S^{-1}(A \otimes_R B) \cong S^{-1}A \otimes_{S^{-1}R} S^{-1}B$;
(e) if $f : A \to A'$ and $g : B \to B'$ are two R-morphisms then:

$$\text{Ker } S^{-1}(f \otimes g) \cong \text{Ker } (S^{-1}f \otimes S^{-1}g)$$

$$\text{Im } S^{-1}(f \otimes g) \cong \text{Im } (S^{-1}f \otimes S^{-1}g)$$

Let A be an R-module. We say that A is S-divisible if for any $a \in A$, $s \in S$ there exists $a' \in A$ such that $a = sa'$. A is called divisible if it is an R^*-divisible module. $t(A) = \{a \in A \mid (\exists) r \in R^*, ra = 0\}$ is called the torsion of A. We have:

(i) $t(A) = R-$submodule of A;
(ii) $t(A/t(A)) = 0$.

We have also:

(2) if A is a torsion-free R-module then A is divisible if and only if A is injective;
(3) if K is the quotient field of R and A is an R-module then A is torsion $(t(A) = A)$ if and only if $K \otimes_R A = 0$.

A ring R is called a Dedekind ring if each ideal of R is a projective R-module.

About the Dedekind rings we have the following equivalent statements:

(i) a domain R is a Dedekind ring;
(ii) every R-submodule of a projective R-module is projective;
(iii) every quotient of an injective R-module is injective.

If A and B are R-modules then:

(a) $\text{Tor}_n^R(A, B) = \frac{\text{Ker } 1_A \otimes d_n}{\text{Im } 1_A \otimes d_{n+1}}$, $(\forall)n \in \mathbb{Z}$, where

$$\cdots \to P_2 \xrightarrow{d_2} P_1 \xrightarrow{d_1} P_0 \to B \to 0$$

is a projective resolution of B;
(b) \(\Ext^n_R(A, B) = \frac{\Ker \Hom(A, d_n)}{\Im \Hom(A, d_{n-1})} \), \((\forall)n \in \mathbb{Z}\), where
\[
0 \rightarrow B \rightarrow E_0 \xrightarrow{d_0} E_1 \xrightarrow{d_1} E_2 \rightarrow \cdots
\]
is an injective resolution of \(B \).

We remark that \(\Tor^n_R(A, B) \) and \(\Ext^n_R(A, B) \) are \(R \)-modules for any \(R \)-modules \(A, B \) and for any \(n \in \mathbb{Z} \).

2. Main results

Let \(R \) be a domain, \(S \) be a multiplicatively closed subset of \(R \) such that \(1 \in S \), \(S^{-1}R \) be the ring of quotients associated to \(R \) and \(S \) and \(K \) be the quotient field of \(R \). Let \(B \) be an \(R \)-module.

Definition 1. \(t_S(B) = \{ b \in B \mid (\exists)s \in S \text{ such that } sb = 0 \} \) is called the \(S \)-torsion of \(B \).

Proposition 1.
(i) \(t_S(B) \) is an \(R \)-submodule of \(B \).
(ii) \(t_S(B/t_S(B)) = 0 \).

Proof. (i) Let \(b_1, b_2 \in t_S(B) \); then \((\exists)s_1, s_2 \in S \text{ such that } s_1b_1 = s_2b_2 = 0\). It follows that \((\exists)s = s_1s_2 = s_2s_1 \in S \text{ such that } s(b_1 - b_2) = 0\); then \(b_1 - b_2 \in t_S(B) \). Let \(r \in R \) and \(b \in t_S(B) \); then \((\exists)s \in S \text{ such that } sb = 0\). We have \(s(rb) = (sr)b = (rs)b = r(sb) = r \cdot 0 = 0 \), which gives \(rb \in t_S(B) \).

(ii) Let \(b + t_S(B) \in t_S(B/t_S(B)) \); then \((\exists)s \in S \text{ such that } s(b + t_S(B)) = 0\). Therefore \(sb \in t_S(B) \) and \((\exists)s' \in S \text{ such that } s'(sb) = 0\). It follows that \((\exists)s'' = s's \in S \text{ such that } s''b = 0 \), i.e. \(b \in t_S(B) \), so \(b + t_S(B) = 0 \).

Definition 2.
(a) We say that \(B \) is \(S \)-saturated if for any \(R \)-monomorphism \(f : B \rightarrow B' \) with \(t_S(B') = 0 \), from \(sb' \in f(B) \), \(s \in S \), \(b' \in B' \) it results \(b' \in f(B) \).
(b) We say that \(B \) is saturated if it is \(R \)-saturated.

Example. Let \(R \) be a field and \(B \) be a vector space over \(R \). Then \(B \) is \(S \)-saturated for any multiplicitively closed subset \(S \) of \(R \) with \(1 \in S \).

Proposition 2. If \(t_S(B) = 0 \) then the following statements are equivalent:
(i) \(B \) is \(S \)-saturated;
(ii) \(B \) is \(S \)-divisible;
(iii) \(B \) is an \(S^{-1}R \)-module.
Proof. (i) \implies (ii) Let \(y \in B \) and \(s \in S \). We consider the \(R \)-morphism
\[
f : B \to B, \quad f(x) = sx \quad (\forall) x \in B.
\]
Since \(f \) is monic, \(sy = f(y) \in f(B) \), \(s \in S \) it results that \(y \in f(B) \), i.e. \((\exists) x \in B \) such that \(y = f(x) \) and so \(B \) is \(S \)-divisible.

(ii) \implies (i) Let \(f : B \to B' \) be an \(R \)-monomorphism with \(t_S(B') = 0 \) and \(sb' \in f(B) \) with \(s \in S \), \(b \in B' \). \(B \) being \(S \)-divisible, we have that \(f(B) = S \)-divisible. It follows that \((\exists) b'' \in f(B) \) such that \(sb' = sb'' \) and so \(s(b' - b'') = 0 \). Since \(t_S(B') = 0 \), we have \(b' = b'' \in f(B) \). Therefore \(B \) is \(S \)-saturated.

(ii) \implies (iii) It is very easy to verify that \(B \) has a structure of
\[
S^{-1}R \times B \to B
\]
\[
\left(\frac{r}{s}, b \right) \mapsto \frac{r}{s}b = rb_1,
\]
where \(b_1 \in B \) such that \(b = sb_1 \), \((\forall) \frac{r}{s} \in S^{-1}R \), \((\forall)b \in B \).

(iii) \implies (ii) Let \(b \in B \) and let \(s \in S \). As \(B \) is an \(S^{-1}R \)-module, we have \(\frac{1}{s}b \in B \); it follows that there exists \(b' \in B \) such that \(b = sb' \). Therefore \(B \) is \(S \)-divisible.

Remark. Let \(E \) be an injective \(R \)-module. If \(S = R^* \) then \(E/t_S(E) \) is an injective \(R \)-module (this follows from (2)). If \(S \subset R^* \), \(S \neq R^* \) then, in general, \(E/t_S(E) \) is not an injective \(R \)-module.

In the following we will consider the class \(\mathcal{R} \) of the domains \(R \) satisfying the property:

\((*)\) for any injective \(R \)-module \(E \) and for any multiplicatively closed subset \(S \) of \(R \) with \(1 \in S \), \(E/t_S(E) \) is an injective \(R \)-module.

Proposition 3. Let \(R \) be an element of \(\mathcal{R} \), \(S \) be a multiplicatively closed subset of \(R \) with \(1 \in S \) and let \(B \) be an \(S \)-saturated \(R \)-module with \(t_S(B) = 0 \). Then \(B \) has an injective resolution:

\[
0 \to B \to E_0 \xrightarrow{d_0} E_1 \xrightarrow{d_1} E_2 \to \cdots
\]
with \(t_S(E_i) = 0 \), \((\forall)i \in \mathbb{N} \).

Proof. We know that there exists an injective \(R \)-module \(E \) and an \(R \)-monomorphism \(f : B \to E \). From \(t_S(B) = 0 \) it results that

\[
\bar{f} : B \to E/t_S(E)
\]
\[
\bar{f}(b) = f(b) + t_S(E), \quad (\forall)b \in B
\]
is an \(R \)-monomorphism.

Taking \(E_0 = E/t_S(E) \), we have a short exact sequence:

\[
(1) \quad 0 \to B \xrightarrow{i_0} E_0 \xrightarrow{\pi_0} X_0 \to 0,
\]
\(i_0 = \bar{f} \), \(\pi_0 \) = the natural map, with \(E_0 \) = injective and \(t_S(E_0) = 0 \). We have:
Indeed, if $x \in t_S(X_0)$ then there exists $s \in S$ such that $sx = 0$; as π_0 is an epimorphism, it results that there exists $e_0 \in E_0$ such that $\pi_0(e_0) = x$. Then we have: $\pi_0(se_0) = s\pi_0(e_0) = sx = 0$, and so $se_0 \in \ker \pi_0 = i_0(B)$. But B is S-saturated and $i_0 : B \to E_0$ is monic, therefore $e_0 \in i_0(B)$ and $x = \pi_0(e_0) = 0$.

We have:

\begin{equation}
X_0 \text{ is } S\text{-saturated.}
\end{equation}

Indeed, $X_0 = \pi_0(E_0)$ and E_0 is divisible; this implies that X_0 is divisible, so X_0 is S-divisible which gives us that X_0 is S-saturated (see the relation (2) and Proposition 2). Repeating the previous reasoning with X_0 as B, we obtain a short exact sequence:

$$0 \to X_0 \xrightarrow{i_1} E_1 \xrightarrow{\pi_1} X_1 \to 0,$$

where E_1 is injective, $t_S(E_1) = 0$, X_1 is S-saturated and $t_S(X_1) = 0$.

By induction, we obtain a short exact sequence:

$$0 \to X_{n-1} \to E_n \to X_n \to 0, \quad (\forall)n \in \mathbb{N},$$

where E_n is injective, $t_S(E_n) = 0$, X_n is S-saturated and $t_S(X_n) = 0$, X_n is S-saturated and $t_S(X_n) = 0$, $x \in \mathbb{N}$.

If we take $d_n = i_{n+1} \circ \pi_n : E_n \to E_{n+1}, \quad (\forall)n \in \mathbb{N}$, we have an injective resolution of B:

$$0 \to B \xrightarrow{i_0} E_0 \xrightarrow{d_0} E_1 \xrightarrow{d_1} E_2 \to \cdots$$

with $t_S(E_i) = 0, \quad (\forall)i \in \mathbb{N}$.

Proposition 4.

(i) If P is a projective R-module then $S^{-1}P$ is a projective $S^{-1}R$-module.

(ii) If E is an injective R-module with $t_S(E) = 0$ then $S^{-1}E$ is an injective $S^{-1}R$-module.

Proof. (i) Let A, B be two $S^{-1}R$-modules and let $f : A \to B, \ h : S^{-1}P \to B$ be two $S^{-1}R$-morphisms with f epimorphism.
We consider $\varphi : P \rightarrow S^{-1}P$ be the natural map $\left(p \mapsto \frac{p}{1}, \forall p \in P \right)$. We have that A, B are two R-modules and f, h are R-morphisms. From the fact that P is projective it results that there is an R-morphism $h' : P \rightarrow A$ such that $f \circ h' = h \circ \varphi$.

Let $\bar{h} : S^{-1}P \rightarrow A$, $\bar{h} \left(\frac{p}{s}\right) = \frac{h'(p)}{s}$, $\forall p \in P$, $\forall s \in S$. It is easy to verify that:

(a) \bar{h} is well defined;

(b) \bar{h} is an $S^{-1}R$-morphism;

(iii) $f \circ \bar{h} = h$.

From the previous statements we have that $S^{-1}P$ is a projective $S^{-1}R$-module.

(ii) Let A, B be two $S^{-1}R$-modules and let $\sigma : A \rightarrow B$, $h : A \rightarrow S^{-1}E$ be two $S^{-1}R$-morphisms with σ monomorphism.

Because E is divisible and $t_S(E) = 0$ we have that: $\forall e \frac{e}{s} \in S^{-1}E$, $\exists! e' \in E$ such that $\frac{e}{s} = e'$ and so we have a function $u : S^{-1}E \rightarrow E$, $\frac{e}{s} \mapsto e'$ with $e = se'$. It is easy to see that u is an $S^{-1}R$-morphism and, in particular, u is an R-morphism. Since E is injective, there is an R-morphism $h' : B \rightarrow E$ such that $h' \circ \sigma = u \circ h$.

Let $\bar{h} : B \rightarrow S^{-1}E$, $\bar{h}(b) = \frac{h'(b)}{1}$, $\forall b \in B$. We have that:

(a) \bar{h} is well defined;

(b) \bar{h} is an $S^{-1}R$-morphism;

(c) $\bar{h} \circ \sigma = h$.
By the previous statements, $S^{-1}E$ is an injective $S^{-1}R$-module.

Proposition 5. If A is an R-module and B is an S-saturated R-module with $t_S(B) = 0$, then we have the isomorphism of $S^{-1}R$-modules:

$$S^{-1}\text{Hom}_R(A, B) \cong \text{Hom}_{S^{-1}R}(S^{-1}A, S^{-1}B).$$

Proof. We define:

$$\psi : S^{-1}\text{Hom}_R(A, B) \longrightarrow \text{Hom}_{S^{-1}R}(S^{-1}A, S^{-1}B)$$

\[\frac{f}{s} \mapsto \psi_{\frac{f}{s}} : A^{-1}A \longrightarrow S^{-1}B\]

\[\frac{a}{s'} \mapsto \frac{f(a)}{ss'},\]

$(\forall) \frac{f}{s} \in S^{-1}\text{Hom}_R(A, B), \ (\forall) \frac{a}{s'} \in S^{-1}A.$

It is easy to verify that:

(a) ψ is well defined;

(b) ψ is an $S^{-1}R$-monomorphism.

We shall prove that ψ is epic. Let $f' : S^{-1}A \longrightarrow S^{-1}B$ be an $S^{-1}R$-morphism; if $\varphi : A \longrightarrow S^{-1}A$ is the natural map $\left(a \mapsto \frac{a}{1}, \ (\forall) a \in A\right)$ and $u : S^{-1}B \longrightarrow B$ is the morphism which was constructed in the proof of Proposition 4, then we have $f = u \circ f' \circ \varphi \in \text{Hom}_R(A, B)$ and $\psi \left(\frac{f}{1}\right) = f'$, so that ψ is epic. In conclusion, ψ is an isomorphism of $S^{-1}R$-modules.

Corollary. If A, B_1, B_2 are R-modules, $h : B_1 \longrightarrow B_2$ is an R-morphism and B_1, B_2 are S-saturated with $t_S(B_1) = t_S(B_2) = 0$ then we have:

\[(*) \quad \text{Ker } S^{-1}\text{Hom}_R(A, h) \cong \text{Ker } \text{Hom}_{S^{-1}R}(S^{-1}A, S^{-1}h)\]

\[\text{Im } S^{-1}\text{Hom}_R(A, h) \cong \text{Im } \text{Hom}_{S^{-1}R}(S^{-1}A, S^{-1}h).\]

Proof. We have the commutative diagram:

$$\begin{array}{ccc}
S^{-1}\text{Hom}_R(A, B_1) & \xrightarrow{\psi_1} & S^{-1}\text{Hom}_R(A, B_2) \\
\text{Hom}_{S^{-1}R}(S^{-1}A, S^{-1}B_1) & \xrightarrow{\psi_2} & \text{Hom}_{S^{-1}R}(S^{-1}A, S^{-1}B_2)
\end{array}$$

where ψ_1 and ψ_2 are the isomorphisms given by Proposition 5.
From $\psi_2 \circ S^{-1}\text{Hom}_R(A, h) = \text{Hom}_{S^{-1}R}(S^{-1}A, S^{-1}h) \circ \psi_1$, we obtain the isomorphisms (**)

Remark. Let A and B be two R-modules.

(a) Following (1), d), §1, we have:

\[(\alpha) \quad S^{-1}\text{Tor}^R_0(A, B) \cong \text{Tor}^{S^{-1}R}_0(S^{-1}A, S^{-1}B).\]

(b) From Proposition 5, it results that, if B is S-saturated with $t_S(B) = 0$, then we have:

\[(\beta) \quad S^{-1}\text{Ext}^0_R(A, B) \cong \text{Ext}^0_{S^{-1}R}(S^{-1}A, S^{-1}B).\]

We extend the isomorphisms (α) and (β) for an arbitrary $n \in \mathbb{N}$.

Theorem. Let R be a domain, S be a multiplicatively closed subset of R with $1 \in S$ and A, B be two R-modules. Then:

(i) $S^{-1}\text{Tor}^R_n(A, B) \cong \text{Tor}^{S^{-1}R}_n(S^{-1}A, S^{-1}B), \ (\forall)n \in \mathbb{N}$.

(ii) If R is an element of R and B is S-saturated with $t_S(B) = 0$, then we have:

\[S^{-1}\text{Ext}^n_R(A, B) \cong \text{Ext}^n_{S^{-1}R}(S^{-1}A, S^{-1}B), \ (\forall)n \in \mathbb{N}.\]

Proof. (i) Let $\cdots \rightarrow P_2 \xrightarrow{d_2} P_1 \xrightarrow{d_1} P_0 \rightarrow B \rightarrow 0$ be a projective resolution of B. We have

\[\text{Tor}^R_n(A, B) = \frac{\text{Ker} \ 1_A \otimes d_n}{\text{Im} \ 1_A \otimes d_{n+1}}.\]

Following Proposition 4, it is easy to see that the sequence:

\[\cdots \rightarrow S^{-1}P_2 \xrightarrow{S^{-1}d_2} S^{-1}P_1 \xrightarrow{S^{-1}d_1} S^{-1}P_0 \rightarrow S^{-1}B \rightarrow 0\]

is a projective resolution of $S^{-1}R$-module $S^{-1}B$. Then

\[\text{Tor}^{S^{-1}R}_n(S^{-1}A, S^{-1}B) = \frac{\text{Ker} \ 1_{S^{-1}A} \otimes S^{-1}d_n}{\text{Im} \ 1_{S^{-1}A} \otimes S^{-1}d_{n+1}}.\]

From the facts that S^{-1} is an exact functor and $S^{-1}(A/A') \cong S^{-1}A/S^{-1}A'$, it results:

\[S^{-1}\text{Ker} \ u \cong \text{Ker} \ S^{-1}u \quad \text{for any } R\text{-morphism } u.\]

\[S^{-1}\text{Im} \ u \cong \text{Im} \ S^{-1}u\]
Then
\[S^{-1}\text{Tor}_n^R(A, B) = S^{-1}\frac{\text{Ker } 1_A \otimes d_n}{\text{Im } 1_A \otimes d_{n+1}} \cong S^{-1}\frac{\text{Ker } 1_A \otimes d_n \cong S^{-1}\text{Im } 1_A \otimes d_{n+1}}{\text{Ker } S^{-1}(1_A \otimes d_n)} \cong S^{-1}\frac{1_{S^{-1}A} \otimes S^{-1}d_n}{\text{Im } S^{-1}(1_A \otimes d_{n+1})} = \text{Tor}_{S^{-1}R}(S^{-1}A, S^{-1}B). \]

(ii) From Proposition 3, \(B \) has an injective resolution:
\[0 \rightarrow B \rightarrow E_0 \xrightarrow{d_0} E_1 \xrightarrow{d_1} E_2 \rightarrow \cdots \]
with \(t_S(E_i) = 0, \, (\forall) i \in \mathbb{N} \).
We have
\[\text{Ext}^n_{R}(A, B) = \frac{\text{Ker } \text{Hom}(A, d_n)}{\text{Im } \text{Hom}(A, d_{n-1})}. \]
Following Proposition 4, it is easy to see that the sequence:
\[0 \rightarrow S^{-1}B \rightarrow S^{-1}E_0 \xrightarrow{S^{-1}d_0} S^{-1}E_1 \xrightarrow{S^{-1}d_1} S^{-1}E_2 \rightarrow \cdots \]
is an injective resolution of the \(S^{-1}R \)-module \(S^{-1}B \). Then
\[\text{Ext}^{n}_{S^{-1}R}(S^{-1}A, S^{-1}B) = \frac{\text{Ker } \text{Hom}(S^{-1}A, S^{-1}d_n)}{\text{Im } \text{Hom}(S^{-1}A, S^{-1}d_{n-1})}. \]
We have:
\[S^{-1}\text{Ext}^n_{R}(A, B) = S^{-1}\frac{\text{Ker } \text{Hom}(A, d_n)}{\text{Im } \text{Hom}(A, d_{n-1})} \cong S^{-1}\frac{\text{Ker } \text{Hom}(A, d_n) \cong S^{-1}\text{Im } \text{Hom}(A, d_{n-1})}{\text{Ker } S^{-1}\text{Hom}(A, d_n)} \cong S^{-1}\frac{\text{Ker } \text{Hom}(S^{-1}A, S^{-1}d_n)}{\text{Im } \text{Hom}(S^{-1}A, S^{-1}d_{n-1})} = \text{Ext}^{n}_{S^{-1}R}(S^{-1}A, S^{-1}B). \]

Corollary 1. In the hypothesis of the above theorem, we have:
\[\text{Tor}^{S^{-1}R}_n(S^{-1}A, S^{-1}B) \cong S^{-1}R \otimes_R \text{Tor}^R_n(A, B) \]
\[\text{Ext}^{n}_{S^{-1}R}(S^{-1}A, S^{-1}B) \cong S^{-1}R \otimes_R \text{Ext}^R_n(A, B). \]

Proof. We saw in (1), b), §1, that for any \(R \)-module \(A \) we have
\[S^{-1}A \cong S^{-1}R \otimes_RA. \]

Corollary 2. If \(R \) is a domain, \(A \) and \(B \) are two \(R \)-modules and \(n \in \mathbb{N}^* \) then \(\text{Tor}^R_n(A, B) \) is a torsion \(R \)-module.
Proof. Taking $S = R^*$ in Corollary 1, we have
\[
(\gamma) \quad \text{Tor}^K_n(S^{-1}A, S^{-1}B) \cong K \otimes_R \text{Tor}^R_n(A, B).
\]
As K is a semisimple ring, we have that every K-module is projective, and therefore
\[
(\delta) \quad \text{Tor}^K_n(S^{-1}A, S^{-1}B) = 0.
\]
Now, from (γ), (δ) and (3), §1, we have that $\text{Tor}^R_n(A, B)$ is a torsion R-module.

Remark. In the hypothesis: "B is saturated with $t(B) = 0$" we get that B is injective and then $\text{Ext}^n_R(A, B) = 0$, for any R-module A and any $n \in \mathbb{N^*}$.
References

Accepted: