Finite groups with a certain number of cyclic subgroups II

Marius Tărnăuceanu
Faculty of Mathematics,
“Al. I. Cuza” University, Iași, Romania
email: tarnauc@uaic.ro

Abstract. In this note we describe the finite groups G having $|G| - 2$ cyclic subgroups. This partially solves the open problem in the end of [3].

Let G be a finite group and $C(G)$ be the poset of cyclic subgroups of G. The connections between $|C(G)|$ and $|G|$ lead to characterizations of certain finite groups G. For example, a basic result of group theory states that $|C(G)| = |G|$ if and only if G is an elementary abelian 2-group. Recall also the main theorem of [3], which states that $|C(G)| = |G| - 1$ if and only if G is one of the following groups: $\mathbb{Z}_3, \mathbb{Z}_4, S_3$ or D_8.

In what follows we shall continue this study by describing the finite groups G for which

$$|C(G)| = |G| - 2.$$ \hfill (*)

First, we observe that certain finite groups of small orders, such as $\mathbb{Z}_6, \mathbb{Z}_2 \times \mathbb{Z}_4, D_{12}$ and $\mathbb{Z}_2 \times D_8$, have this property. Our main theorem proves that in fact these groups exhaust all finite groups G satisfying (*).

Theorem 1 Let G be a finite group. Then $|C(G)| = |G| - 2$ if and only if G is one of the following groups: $\mathbb{Z}_6, \mathbb{Z}_2 \times \mathbb{Z}_4, D_{12}$ or $\mathbb{Z}_2 \times D_8$.

2010 Mathematics Subject Classification: Primary 20D99; Secondary 20E34
Key words and phrases: cyclic subgroups, finite groups
Proof. We will use the same technique as in the proof of Theorem 2 in [3]. Assume that G satisfies (\ast), let $n = |G|$ and denote by d_1, d_2, \ldots, d_k the positive divisors of n. If $n_i = |\{H \in C(G) \mid |H| = d_i\}|$, $i = 1, 2, \ldots, k$, then

$$
\sum_{i=1}^{k} n_i \phi(d_i) = n.
$$

Since $|C(G)| = \sum_{i=1}^{k} n_i = n - 2$, one obtains

$$
\sum_{i=1}^{k} n_i (\phi(d_i) - 1) = 2,
$$

which implies that we have the following possibilities:

Case 1. There exists $i_0 \in \{1, 2, \ldots, k\}$ such that $n_{i_0} (\phi(d_{i_0}) - 1) = 2$ and $n_i (\phi(d_i) - 1) = 0, \forall i \neq i_0$.

Since the image of the Euler’s totient function does not contain odd integers > 1, we infer that $n_{i_0} = 2$ and $\phi(d_{i_0}) = 2$, i.e. $d_{i_0} \in \{3, 4, 6\}$. We remark that d_{i_0} cannot be equal to 6 because in this case G would also have a cyclic subgroup of order 3, a contradiction. Also, we cannot have $d_{i_0} = 3$ because in this case G would contain two cyclic subgroups of order 3, contradicting the fact that the number of subgroups of a prime order p in G is $\equiv 1 \pmod{p}$ (see e.g. the note after Problem 1C.8 in [1]). Therefore $d_{i_0} = 4$, i.e. G is a 2-group containing exactly two cyclic subgroups of order 4. Let $n = 2^m$ with $m \geq 3$. If $m = 3$ we can easily check that the unique group G satisfying (\ast) is $Z_2 \times Z_4$. If $m \geq 4$ by Proposition 1.4 and Theorems 5.1 and 5.2 of [2] we infer that G is isomorphic to one of the following groups:

- M_{2^m};
- $Z_2 \times Z_{2^{m-1}}$;
- $\langle a, b \mid a^{2^{m-2}} = b^8 = 1, a^b = a^{-1}, a^{2^m - 3} = b^4 \rangle$, where $m \geq 5$;
- $Z_2 \times D_{2^{m-1}}$;
- $\langle a, b \mid a^{2^{m-2}} = b^2 = 1, a^b = a^{-1+2^{m-4}}, c^2 = [c, b] = 1, a^c = a^{1+2^{m-3}} \rangle$, where $m \geq 5$.
All these groups have cyclic subgroups of order 8 for \(m \geq 5 \) and thus they do not satisfy (\(\ast \)). Consequently, \(m = 4 \) and the unique group with the desired property is \(\mathbb{Z}_2 \times D_8 \).

Case 2. There exist \(i_1, i_2 \in \{1, 2, \ldots, k\} \), \(i_1 \neq i_2 \), such that \(n_{i_1}(\phi(d_{i_1}) - 1) = n_{i_2}(\phi(d_{i_2}) - 1) = 1 \) and \(n_i(\phi(d_i) - 1) = 0 \), \(\forall i \neq i_1, i_2 \).

Then \(n_{i_1} = n_{i_2} = 1 \) and \(\phi(d_{i_1}) = \phi(d_{i_2}) = 2 \), i.e. \(d_{i_1}, d_{i_2} \in \{3, 4, 6\} \). Assume that \(d_{i_1} < d_{i_2} \). If \(d_{i_2} = 4 \), then \(d_{i_1} = 3 \), that is \(G \) contains normal cyclic subgroups of order 3 and 4. We infer that \(G \) also contains a cyclic subgroup of order 12, a contradiction. If \(d_{i_2} = 6 \), then we necessarily must have \(d_{i_1} = 3 \). Since \(G \) has a unique subgroup of order 3, it follows that a Sylow 3-subgroup of \(G \) must be cyclic and therefore of order 3. Let \(n = 3 \cdot 2^m \), where \(m \geq 1 \). Denote by \(n_2 \) the number of Sylow 2-subgroups of \(G \) and let \(H \) be such a subgroup. Then \(H \) is elementary abelian because \(G \) does not have cyclic subgroups of order \(2^i \) with \(i \geq 2 \). By Sylow’s Theorems,

\[
n_2 | 3 \text{ and } n_2 \equiv 1 \pmod{2},
\]

implying that either \(n_2 = 1 \) or \(n_2 = 3 \). If \(n_2 = 1 \), then \(G \cong \mathbb{Z}_2^m \times \mathbb{Z}_3 \), a group that satisfies (\(\ast \)) if and only if \(m = 1 \), i.e. \(G \cong \mathbb{Z}_6 \). If \(n_2 = 3 \), then \(|\text{Core}_G(H)| = 2^{m-1}| \) because \(G/\text{Core}_G(H) \) can be embedded in \(S_3 \). It follows that \(G \) contains a subgroup isomorphic with \(\mathbb{Z}_2^{m-1} \times \mathbb{Z}_3 \). If \(m \geq 3 \) this has more than one cyclic subgroup of order 6, contradicting our assumption. Hence either \(m = 1 \) or \(m = 2 \). For \(m = 1 \) one obtains \(G \cong S_3 \), a group that does not have cyclic subgroups of order 6, a contradiction, while for \(m = 2 \) one obtains \(G \cong D_{12} \), a group that satisfies (\(\ast \)). This completes the proof. \(\square \)

References

Received: December 2, 2017