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1

Abstract We start this study with last multipliers and the Liouville equation for a1

symmetric and non-degenerate tensor field Z of (0, 2)-type on a given Riemannian2

geometry (M, g) as a measure of how far away is Z from being divergence-free3

(and hence gC -harmonic) with respect to g. The some topics are studied also for the4

Riemannian curvature tensor of (M, g) and finally for a general tensor field of (1, k)-5

type. Several examples are provided, some of them in relationship with Ricci solitons.6

Inspired by the Riemannian setting, we introduce last multipliers in the abstract frame-7

work of Dirichlet forms and symmetric Markov diffusion semigroups. For the last8

framework, we use the Bakry-Emery carré du champ associated to the infinitesimal9

generator of the semigroup.10

Keywords Riemannian manifold · Symmetric covariant 2-tensor field · Last11

multiplier · Liouville equation · Jacobi form · Modular manifold · Ricci soliton ·12

Dirichlet form · Markov diffusion semigroups13
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Introduction15

The method of study dynamical systems through Jacobi last multipliers is well known,16

and a modern approach can be found in [26]. Recently, we extend in [12] the notion17

of last multiplier and its associated Liouville equation to vector fields on manifolds18
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endowed with a volume form. Also, these objects are studied in some remarkable set-19

tings: for Poisson geometry in [13], for weighted manifolds in [15], for Lie algebroids20

in [17] and in a complex framework in [18].21

All these works concern with vectors and multivectors. This paper starts with the22

case of covariant tensor fields Z of second order and in a Riemannian geometry23

(M, g). We impose two conditions of such Z : (1) the symmetry, in order to define the24

divergence of Z with respect to g; (2) the non-degeneration, in order to deal with the25

corresponding Liouville equation, see (1.5) below. It follows the birth of a remarkable26

1-form, ωZ := Z−1
♯ (divZ), called the Jacobi form of the triple (M, g, Z). Then27

the existence of last multipliers for Z with respect to g means that this form is an28

exact one. Since exactness implies closedness, we arrive at a de Rham cohomology29

[ωZ ] ∈ H1(M) when Z admits last multipliers.30

The motivation for this subject is both geometrical and dynamical. From a geometric31

point of view, we study several important cases of Z , some of them involved in the32

Ricci flow theory (see for example [8] for general theory and the particular case of33

Ricci solitons in [2]): the Ricci tensor of g, the Hessian of a smooth function, the34

Lie derivative of g with respect to a given vector field. Also, since the divergence-free35

nature of Z expresses the harmonicity of its (1, 1)-version with respect to the complete36

lift of g (which is a semi-Riemannian metric, [21,22]), we connect our study with the37

theory of harmonic self-maps of (T M, gC ). From the dynamical point of view, the38

divergence-free covariant tensors provide physical conservation laws (see the whole39

of [6, Chap. 5]) and the generic example is the Einstein tensor of g discussed in Sect.40

2.41

In fact, the main result, namely Theorem 1.3, gives a condition for the existence of42

last multipliers for a given Z with respect to g and also, their generic expression in43

terms of a potential u ∈ C∞(M) of the Jacobi form. This closedness condition, (1.7)44

or equivalently (1.8), is expressed in terms of ∇=the Levi-Civita connection of g and45

the (1, 1)-version of Z ; so, there exist curvature restrictions generated by g as well as46

the nature of Z . Also, this condition (1.7) involves the exterior differential d on M ,47

and hence there are de Rham cohomology restrictions. It follows that there exists Z48

without last multipliers with respect to g.49

The paper is organized as follows. The first section introduces the setting and its50

main result, namely Theorem 1.3, discusses the existence and expression of the last51

multipliers for a fixed Z . Several remarks are included towards a better picture of52

this framework; for example the Jacobi form is expressed in an adapted orthonormal53

co-frame.54

The Sect. 2 is devoted to applications and some remarkable 2-tensor fields are dis-55

cussed: the metric (as the simpler case), the Ricci tensor, Chen-Nagano harmonicity,56

the Lie derivative of g with respect to a given vector field, the Hessian of a smooth func-57

tion, the second fundamental of a hypersurface, and 2-tensors obtained from 1-forms.58

We continue their study in Sect. 3 with concrete examples: rotationally symmetric59

metrics, quasi-constant curvature manifolds, quasi-Einstein manifolds, Ricci solitons60

and spheres. For Ricci solitons, we derive the (non-vanishing) Jacobi-Ricci form in61

the gradient case while for the general (not necessary gradient) case the harmonicity of62

(LV g)♯ is equivalent with the constancy of the scalar curvature. Also for the gradient63

case the measure and the diffusion operator (weighted Laplacian) of the canonically64
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Last Multipliers for Riemannian Geometries

associated metric measure space are expressed by using the last multiplier instead of65

the potential function u; in fact this was the initial motivation for this work, namely66

to derive relationships between (gradient) Ricci solitons and last multipliers.67

The fourth section concerns with two types of deformations: (1) conformal defor-68

mations and the case of a traceless Z is discussed from the point of preserving the69

exactness (closedness) character of the triple (M, g, Z); (2) the curvature deforma-70

tions under the action of curvature operator of g. The following section discusses the71

case of the Riemannian curvature tensor of g, and we finish with a general tensor field72

T ∈ T 1
k (M) for which we express the Liouville equation. By using the Weitzenböck73

formula, we express this equation for T = ∇α with α a k-form in terms of Laplacian74

and the rho tensor field of α.75

Inspired by a formula for last multipliers of vector fields from the Riemannian76

geometry which involves the Laplacian, we extend this notion firstly for the setting of77

Dirichlet forms and secondly for symmetric Markov diffusion semigroups in the last78

section. For the last framework, we use the Bakry-Emery carré du champ Ŵ associated79

to the infinitesimal generator L of the semigroup and then an example of last multiplier80

is put in relationship with the harmonicity with respect to L .81

1 Last Multipliers for Symmetric Covariant 2-Tensors82

Let (Mn, g) be a smooth, n-dimensional Riemannian manifold and fix an orthonormal83

frame {ei ; 1 ≤ i ≤ n} = {e1, . . . , en} ⊂ X (M). As usual, we denote by C∞(M) the84

algebra of smooth real functions on M , by X (M) the C∞(M)-module of vector fields85

and by �k(M) the C∞(M)-module of differential k-forms on M with 1 ≤ k ≤ n.86

We need also C∞
+ (M) the cone of positive smooth functions on M . Let ∇ be the87

Levi-Civita connection of g and T r the trace operator with respect to g.88

The main object of our study is a fixed symmetric tensor field of (0, 2)-type: Z ∈89

T 0
2,s(M). Its associated (1, 1)-tensor field has two variants: 1) Z ♯ : X (M) → X (M)90

and 2) Z♯ : �1(M) → �1(M), respectively. The divergence of Z with respect to g is91

div Z ∈ �1(M) defined by [2, p. 9]:92

divZ = T r(∇Z ♯) (1.1)93

which means for X ∈ X (M) that [1, p. 334]:94

divZ(X) =

n
∑

i=1

(∇ei
Z)(X, ei ). (1.2)95

Sometimes, a local expression is useful. In a local coordinate system (x i ; 1 ≤ i ≤ n)96

on M , we have g = gi j dx i ⊗ dx j and Z = Zi j dx i ⊗ dx j with Zi j = Z j i ; hence97

Z ♯(Z♯) = Z i
j

∂

∂x i ⊗dx j with Z i
j = gia Zaj . Let (Ŵa

bc) be the set of Christoffel symbols98

of ∇. Then99

divZ = Z k
j |kdx j , Z k

j |i =
∂ Z k

j

∂x i
+ Z l

jŴ
k
li − Z k

l Ŵl
j i . (1.3)100
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Fix also f ∈ C∞(M). A straightforward computation gives101

div( f Z) = Z♯(d f ) + f divZ . (1.4)102

The aim of this paper is to study the following notion:103

Definition 1.1 The function f ∈ C∞
+ (M) is a last multiplier for Z with respect to g104

if div( f Z) = 0. The corresponding equation105

Z♯(d ln f ) = −divZ (1.5)106

is called the Liouville equation of Z with respect to g.107

In order to solve the Liouville equation, we need an additional hypothesis: Z is108

non-degenerate i.e., Z ♯ is non-singular operator. Let T 1
1,i (M) be the cone of invertible109

endomorphisms of the tangent bundle T M ; then Z ♯ ∈ T 1
1,i (M). Hence our setting is110

described by the following notions:111

Definition 1.2 (i) The triple (M, g, Z) with non-degenerate Z is called exact112

(closed) modular manifold if its Jacobi form ωZ := Z−1
♯ (divZ) ∈ �1(M)113

is exact (closed).114

(ii) In the first case above, the function u ∈ C∞(M) is called potential if ωZ = du.115

In the second case above, the cohomology class [ωZ ] ∈ H1(M) is called the116

modular class of the closed modular manifold (M, g, Z).117

We obtain a characterization for the existence of last multipliers:118

Theorem 1.3 i. Let Z ∈ T 0
2,s(M) be non-degenerate. Then Z admits last multipliers119

with respect to g if and only if (M, g, Z) is an exact modular manifold; hence if120

u ∈ C∞(M) is a potential of it then the last multipliers of Z have the form:121

f = fC = C exp(−u) (1.6)122

for C > 0. It results that if f1 and f2 are last multipliers then there exists a constant123

C > 0 such that f2 = C f1.124

ii. The triple (M, g, Z) is a closed modular manifold if and only if125

divZ ∈ K er(d ◦ Z−1
♯ ) (1.7)126

equivalently127

Z ♯ ∈ K er(d ◦ Z−1
♯ ◦ T r ◦ ∇). (1.8)128

iii. In particular, if Z is divergence-free then its last multipliers are the (positive)129

constant functions.130
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Last Multipliers for Riemannian Geometries

Remark 1.4 (i) Let us denote the operator L Mg Z := d ◦ Z−1
♯ ◦ T r ◦ ∇ involved in131

condition (1.8). It results that L Mg Z has the decomposition:132

T
1

1,i (M)
∇
→ T

1
2 (M)

T r
→ T

0
1 (M) = �1(M)

Z−1
♯

→ �1(M)
d
→ �2(M). (1.9)133

Let us remark that the four operators involved above have different natures:134

the middle terms (T r, Z−1
♯ ) are algebraic while the extremal terms (∇, d) are135

differential. Two of them (∇, T r) depend on g; only one depends of Z, namely136

Z−1
♯ , and the last, namely d, concerns with the nature of ambient setting M .137

(ii) Following the case of weighted divergence for vector fields from [15], we define138

the weighted f -divergence of Z as139

div f Z :=
1

f
div( f Z). (1.10)140

Then the Liouville equation is div f Z = 0 and the set of last multipliers is a141

”measure of how far away” is Z from being f -divergence-free with respect to142

g.143

(iii) In [21, p. 26] or [22, p. 127], it is remarked that the divergence-free character of144

Z is equivalent with the harmonicity of the map Z ♯ : (T M, gC ) → (T M, gC )145

where gC is the complete lift of g to the tangent bundle of M . Hence, if f is a146

last multiplier we can say that Z ♯ is f -harmonic with respect to gC .147

(iv) We can consider a Frolicher-Nijenhuis type approach. For a 1-form ω and a148

(1, 1)-tensor field F , we can define the F-differential of ω by149

dFω(·, ·) = dω(F ·, ·) − d(F♯(ω)). (1.11)150

The condition (1.7) means d(Z−1
♯ (divZ)) = 0 and hence the Liouville equation151

means in terms of 2-forms:152

(d
Z−1

♯
divZ)(·, ·) = d(divZ)(Z ♯·, ·). (1.12)153

(V) The Liouville equation can be completely integrated in the 1-dimensional case:154

g = g(x) > 0, Z = Z(x)dx ⊗ dx . Since Z ♯(Z♯) = Z
g

∂
∂x

⊗ dx , the non-155

degeneration of Z means Z 
= 0. The divergence of Z is divZ = 1
g
( Z

g
)′dx where156

we use the derivative with respect to variable x of M . The operator involved in157

(1.7) is Z−1
♯ : ω ∈ �1(M) →

g
Z
ω ∈ �1(M) and hence the formal equation158

f (x) = exp

(

−

∫

Z−1
♯ (divZ)dx

)

(1.13)159

is expressed as160

f (x) = exp

(

−

∫

1

Z

(

Z

g

)′

dx

)

. (1.14)161
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For example, if Z = gk then a straightforward computation yields: f (x) =162

C exp( k−1
g(x)

) with the constant C > 0.163

(vi) There exists an orthonormal frame adapted to our setting. Indeed, since Z ♯ is164

symmetric i.e., g-self-adjoint165

g(Z ♯ X, Y ) = g(X, Z ♯Y ), (1.15)166

there exists such an orthonormal frame and there exists {λ1, . . . , λn} ⊂ C∞(M)2 167

such that ei is unit of the eigenvector corresponding to the eigenvalue λi :168

Z ♯ei = λi ei . (1.16)169

Let {e1, . . . , en} ⊂ �1(M) be the dual frame. Then we express the divergence170

of Z as171

divZ = A j e
j , A j = divZ(e j ). (1.17)172

In order to express the coefficient A j , we introduce the connection coefficients173

{Ck
i j } ⊂ C∞(M) of ∇ with respect to the adapted orthonormal frame:174

∇ei
e j = Ck

i j ek . (1.18)175

Hence, a long but straightforward computation gives176

A j = e j (λ j ) −

n
∑

i=1

(

C i
i jλi − C

j

i iλ j
)

. (1.19)177

It follows an expression of the Jacobi form. Since178

Z♯ : ωkek ∈ �1(M) → ωkλkek ∈ �1(M), (1.20)179

we obtain that Z is non-degenerate if and only if all its eigenvalues λi are different180

to zero and the inverse:181

Z−1
♯ : ωkek ∈ �1(M) →

ωk

λk

ek ∈ �1(M). (1.21)182

In conclusion, the Jacobi form of (M, g, Z) expressed in the adapted dual frame183

is184

ωZ =
A j

λ j

e j . (1.22)185

Its differential is186

dωZ = d

(

A j

λ j

)

∧ e j +
A j

λ j

de j = ek

(

A j

λ j

)

ek ∧ e j −
A j

λ j

θ
j

k ∧ ek (1.23)187
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Last Multipliers for Riemannian Geometries

with θ
j

k the connection 1-forms of g, [2, p. 2]. But188

θ
j

k = C
j
ikei (1.24)189

and then190

dωZ =

[

ei

(

Ak

λk

)

− C
j
ik

A j

λ j

]

ei ∧ ek . (1.25)191

(vii) The 2-tensor field Z being symmetric and non-degenerate can be considered as192

another Riemannian metric on M . To the pair of Riemannian metrics (g, Z) and193

the application ϕ : M → M in [9, p. 337], it is associated as a map-Laplacian194

�g,Zϕ := T rg(∇
g⊠ϕ Z dϕ) (1.26)195

with g ⊠ϕ Z := g−1 ⊗ϕ∗Z the natural bundle metric on T ∗M ⊗ϕ−1(T M) and196

∇g⊠ϕ Z dϕ the associated map-Hessian of dϕ : T M → T M . Hence, with the197

computation of the cited book on page 338, we get that the divergence of Z can198

be computed in another way from199

divg Z = (�g,Z 1M )
g
♯ +

1

2
d(T rg Z) (1.27)200

with 1M the identity map of M and T rg Z the trace of Z with respect to g. The201

term �g,Z 1M is a vector field along the map 1M and hence is a section in the202

pull-back bundle 1−1
M T M = T M i.e., an usual vector field on M ; the notation203

from (1.27) gives its dual 1-form with respect to g. Then f is a last multiplier of204

Z if and only if:205

(�g, f Z 1M )
g
♯ +

1

2
d( f T rg Z) = 0. (1.28)206

Hence we introduce a new type of multiplier:207

Definition 1.5 Let M be endowed with the Riemannian metrics g, Z , and f ∈208

C∞
+ (M). We call f as being a conformal harmonic multiplier for Z with respect209

to g if 1M : (M, g) → (M, f Z) is a harmonic map.210

It follows that a conformal harmonic multiplier f is also a last multiplier for Z with211

respect to g if and only if it has the expression C
T rg Z

supposing that T rg Z 
= 0.212

2 Applications to Some Remarkable 2-Tensor Fields213

In this section, we provide several examples of above settings.214

(I) Z = g. Let I ∈ T 1
1,i (M) be the Kronecker endomorphism given locally by δi

j .215

Since ∇g♯ = ∇ I = 0 we have two results: (1) a well-known one: g is divergence-free;216
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(2) the triple (M, g, g) is exact modular manifold with zero Jacobi form. Hence we217

have the case iii of Theorem 1.3.218

Moreover, if Z is a conformal deformation of g, i.e., Z = ug with u ∈ C∞
+ (M),219

then the triple (M, g, ug) is an exact modular manifold since Z−1
♯ = 1

u
I and its Jacobi220

form is ωZ = d ln u; its modular class is zero. The Liouville equation yields the last221

multipliers f = fC = C
u

with C > 0.222

(II) Z = Ric the Ricci tensor field of g. Let us denote Q = Ric♯, respectively,223

S = Ric♯ and suppose that Ric is non-degenerate. Denote by R the scalar curvature224

of g. The divergence of Ric is given by [27, p. 39]225

divRic =
1

2
d R (2.1)226

and then we introduce the following:227

Definition 2.1 If the Ricci tensor is non-degenerate then the Jacobi-Ricci form of228

(M, g) is ωRic := S−1(d R) ∈ �1(M). The Riemannian manifold (M, g) is called229

Ricci-exact (Ricci-closed) modular manifold if ωRic is exact (closed). In the second230

case, the de Rham cohomology class [ωRic] ∈ H1(M) is called the Ricci-modular231

class of (M, g).232

Hence Ric admits last multipliers with respect to g if and only if (M, g) is a Ricci-233

exact modular manifold and if u is a potential for it, i.e. ωRic = du, then the last234

multipliers of Ric have the form235

f = fC = C exp
(

−
u

2

)

(2.2)236

with C > 0. The Riemannian manifold (M, g) is a Ricci-closed modular manifold if237

and only if238

R ∈ K er(d ◦ S−1 ◦ d) (2.3)239

and the Liouville equation for Ric is240

d ln f = −
1

2
ωRic. (2.4)241

In particular, if R is constant then Ric is divergence-free and the last multipliers of242

Ric with respect to g are again the constant functions. Two related tensors are243

(a) the Einstein tensor of g, [27, p. 106]: Einstein(g) := Ric − R
2

g which is again244

divergence-free and we have a variant of Proposition 3.1 from [21, p. 26]:245

Proposition 2.2 For any Riemannian geometry (M, g), the map Q − R
2

g :246

(T M, gC ) → (T M, gC ) is harmonic and in particular, the scalar curvature of g247

is constant if and only if Q : (T M, gC ) → (T M, gC ) is a harmonic map. Moreover,248

if Ric is non-degenerate then the map 1M : (M, g) → (M, Ric) is harmonic.249
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Last Multipliers for Riemannian Geometries

(b) the Schouten tensor of g, [27, p. 109], for n > 2: P = 1
n−2

(2Ric − R
n−1

g). Its250

divergence is div P = 1
n−1

d R.251

Let us point out that in [24,25] is considered a tensor field of type Z = Ric + ϕg 3252

with ϕ ∈ C∞(M) and its physical importance.253

(III) (Chen–Nagano harmonicity) A common generalization of the cases I and II is254

provided by the harmonicity in the Chen–Nagano (CN) sense. Recall, after [7], that the255

metric Z is CN-harmonic with respect to g if the identity map 1M : (M, g) → (M, Z)256

is harmonic. With the discussion of [21, p. 26], this is equivalent with the divergence-257

free character of the tensor field: Z − T r Z
2

g. We derive:258

Proposition 2.3 Suppose that Z is CH-harmonic with respect to g. Then (M, g, Z)259

is a closed modular manifold if and only if260

T r Z ∈ K er(d ◦ Z−1
♯ ◦ d). (2.5)261

In particular, if T r Z is constant (for example Z is traceless) then the last multipliers262

of Z are the (positive) constant functions.263

A more general case is when T r Z is an eigenvalue of Z♯: Z♯(T r Z) = λT r Z with264

λ 
= 0. Then the last multipliers of Z have the expression: f = C exp(− T r Z
2λ

) with265

C > 0. The case of traceless operators is discussed in the section 4.266

(IV) Fix V ∈ X (M) and consider Z = LV g where LV denotes the Lie derivative267

with respect to g. Its local expression is268

Zi j = Vi | j + V j |i , Va|b =
∂Va

∂xb
− VlŴ

l
ab, Z k

j = V k
| j + gka V j |a . (2.6)269

The non-degeneration of this Z excludes the case of a Killing V . Let V ♭ be the 1-form270

dual of V with respect to g and � the Laplacian of g. The divergence of this Z is271

expressed in Lemma 1.10 of [8, p. 6] as272

divZ = (� + S)(V ♭) + d(divV ). (2.7)273

The operator � + S can be considered as a ”Schrödinger” one on 1-forms and hence:274

Proposition 2.4 The triple (M, g,LV g) is a closed modular manifold if and only if275

d ◦ (LV g)−1
♯

[

((� + S)(V ♭) + d(divV )
]

= 0. (2.8)276

If V ♭ is a solution of the ”Schrödinger-Ricci” equation i.e.,277

(� + S)(V ♭) = −d(divV ) (2.9)278

then (LV g)♯ : (T M, gC ) → (T M, gC ) is a harmonic map.279
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In a local coordinate system the Schrödinger-Ricci equation is280

�V j + R jk V k = −
∂

∂x j

(

n
∑

i=1

V i
|i

)

, (2.9loc)281

282

and if V is divergence-free then it means that V ♭ belongs to the kernel of � + S.283

(V) Fix u ∈ C∞(M) and consider Z = H(u) the Hessian of u with respect to g.284

Its local components are285

H(u)i j =
∂2u

∂x i∂x j
− Ŵk

i j

∂u

∂xk
. (2.10)286

The class of smooth functions with vanishing Hessian are called linear in [27, p. 283]287

and Killing potentials in [11] since their gradient are Killing vector fields. From (2.7)288

we obtain289

divH(u) =
1

2
[(� + S)(du) + d(�u)] (2.11)290

and then we get, with δ : �k(M) → �k−1(M) the co-differential induced by g:291

Proposition 2.5 For a nonlinear function u, the triple (M, g, H(u)) is a closed mod-292

ular manifold if and only if293

d ◦ (H(u))−1
♯ [(2dδ + S)(du)] = 0. (2.12)294

If u is a solution of the ”exact Schrödinger-Ricci” equation i.e.,295

(2dδ + S)(du) = 0 (2.13)296

then H(u)♯ : (T M, gC ) → (T M, gC ) is a harmonic map.297

A combination of this application and II) consists in the Bakry-Emery Ricci tensor298

Ricu := Ric + H(u) (2.14)299

expressing the equation of gradient Ricci solitons and having the divergence300

divRicu =
1

2
[(� + S)(du) + d(R + �u)] . (2.15)301

This tensor field is divergence-free if and only if302

(2dδ + S)(du) = −d R (2.16)303

and we will meet again in the following section. We finish this application with a304

generalization of Ricci solitons:305
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Last Multipliers for Riemannian Geometries

Definition 2.6 On the Riemannian manifold (M, g) endowed with Z ∈ T 0
2,s(M) the306

pair (u, λ) is a Z -gradient soliton if307

H(u) + Z + λg = 0. (2.17)308

(VI) Let η ∈ �1(M) and ξ ∈ X (M) its g-dual. Consider Z = η ⊗ η and its309

(1, 1)-version Z ♯(Z♯) = η ⊗ ξ . Then ∇Z ♯ = ∇η ⊗ ξ + η ⊗ ∇ξ which yields310

divZ = (divξ)η + ∇ξη. (2.18)311

Since Z♯ : ω ∈ �1(M) → ω(ξ)η ∈ �1(M), it results that condition (1.7) requires312

(divξ)η + ∇ξη be a multiple of η. The first term is already a multiple of η, hence we313

need the hypothesis314

∇ξη = uη (2.19)315

for a given u ∈ C∞(M), which can be called the ξ -recurrence of η since is a particular316

case of the recurrence ∇η = uη ⊗ η. Then317

Z−1
♯ : divZ → ωZ ∈ �1(M), ωZ (ξ) = divξ + u (2.20)318

and we derive:319

Proposition 2.7 Let Z = η ⊗ η be non-degenerate with η being ξ -recurrent with the320

factor u ∈ C∞(M). Suppose there exists ωZ ∈ �1(M) such that321

ωZ (ξ) = divξ + u. (2.21)322

Then Z admits last multipliers if and only if ωZ is an exact 1-form and the correspond-323

ing Liouville equation is d ln f = −ωZ .324

Hence, the Jacobi form of this example is exactly ωZ satisfying (2.21) and the325

recurrence (2.19) can be expressed as ∇ξ ξ = uξ . An important particular case is326

that of a geodesic vector field, ∇ξ ξ = 0, for which its Jacobi form must satisfies327

ωZ (ξ) = divξ .328

(VII) Let A, B ∈ X (M) and a, b ∈ �1(M) their g-dual. It is well-known that A329

and B define the skew-symmetric operator: A ∧g B : X ∈ X (M) → g(A, X)B −330

g(B, X)A ∈ X (M). For example, (M, g) has constant curvature k if and only if its331

curvature tensor Riem satisfies ([27, p. 84]) Riem(X, Y ) = −k X ∧g Y for all vector332

fields X , Y .333

The same vector fields define also a symmetric operator Z ♯ = 1
2
(A ⊗ b + a ⊗ B) :334

X ∈ X (M) → 1
2
[g(A, X)B + g(B, X)A] ∈ X (M), and hence we can consider its335

(0, 2)-variant: Z = 1
2
(a ⊗b +b ⊗a). If locally we have A = Ai ∂

∂x i , B = B j ∂

∂x j then336

Zi j = 1
2
(Ai B j + A j Bi ). Its variant on 1-forms is Z♯ : ω ∈ �1(M) → 1

2
[ω(A)b +337
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ω(B)a] ∈ �1(M) and then η ∈ �1(M) belongs to the domain of Z−1
♯ if and only if is338

C∞(M)-combination of a and b. A straightforward computation gives the divergence:339

divZ =
1

2
[∇Ab + ∇Ba + (divA)b + (divB)a]. (2.22)340

For a = b we reobtain the application VI.341

(VIII) Suppose that M is a hypersurface in N n+1 and let g be its first fundamental342

form and Z = b its second fundamental form. Let A be the Weingarten (or shape)343

operator of M and suppose that A is invertible. The divergence of b with respect to g is344

divb = d(T r A) = nd H (2.23)345

with H the mean curvature. The condition (1.7) becomes346

H ∈ K er(d ◦ A−1
♯ ◦ d). (2.24)347

Hence we define the Jacobi-shape form of the hypersurface M as348

ωM := A−1
♯ (d H) (2.25)349

while the Liouville equation is350

d ln f = −nωM . (2.26)351

In conclusion, the CMC hypersurfaces admit as last multipliers the positive con-352

stant functions. For a general hypersurface let {e1, . . . , en} its principal directions and353

{λ1, . . . , λn} its principal curvatures. As in item vi) of Remarks 1.4 we obtain the354

Jacobi-shape form of M :355

ωM =

n
∑

i=1

ei (H)

λi

ei (2.27)356

for H = 1
n

∑n
j=1 λ j .357

(IX) A generalization of the previous application concerns with smooth maps. Let358

ϕ : (M, g) → (N , h) be a smooth map between Riemannian manifolds and let359

Z = ϕ∗h be the first fundamental form of ϕ. With the formula (1.28) we get that360

f ∈ C∞
+ (M) is a last multiplier for ϕ∗h with respect to g if and only if361

(�g, f ϕ∗h1M )
g
♯ +

1

2
d( f ‖dϕ‖2

g⊠ϕϕ∗h) = 0. (2.28)362

(X) Suppose that (M, g) supports a Riemannian (static) continuum body charac-363

terized by i) the mass density ρ ∈ C∞(M); ii) the mass force F ∈ �1(M). It is364

well known that the behavior of this continuous deformable medium is described by365

the stress tensor σ ∈ T 0
2,s(M) of Cauchy, see [23]. Hence, the equation of motion is366

described by the first Cauchy law of equilibrium367
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Last Multipliers for Riemannian Geometries

divσ + ρF = 0 (2.29)368

and we suppose that the stress tensor is non-degenerate. It follows the Jacobi form of369

this body:370

ωσ = −σ−1(ρF). (2.30)371

3 Examples of Jacobi-Ricci Forms372

In this section, we discuss some explicit examples with computable Jacobi-Ricci form.373

3.1 Rotationally Symmetric Metrics374

Following [27, p. 118] we consider a general rotationally symmetric metric375

g = dr2 + ρ2(r)ds2
n−1 (3.1)376

with ds2
n−1 the canonical metric of Sn−1. Its scalar curvature is [27, p.121]377

R = −2(n − 1)
ρ̈

ρ
+ (n − 1)(n − 2)

1 − ρ̇

ρ2
, (3.2)378

and then we are interested in the behavior of Q on ∂
∂r

and from the same citation:379

Q

(

∂

∂r

)

= −(n − 1)
ρ̈

ρ

∂

∂r
. (3.3)380

Hence for n = 2 we suppose that
ρ̈
ρ


= 0 and its Jacobi-Ricci form is381

ωRic = d ln

(

ρ̈

ρ

)2

(3.4)382

which yields the following:383

Proposition 3.1 A 2D rotationally symmetric metric (3.1) with ρ̈ 
= 0 admits last384

multipliers having the expression385

f = fC (r) = C

(

ρ

ρ̈

)2

(3.5)386

with C > 0.387
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For n ≥ 3 we obtain the Jacobi-Ricci form388

ωRic = d ln

(

ρ̈

ρ

)2

+ (2 − n)
2ρ̇(ρ̇ − 1) − ρρ̈

ρ2ρ̈
dr (3.6)389

and then (M, g) is a Ricci-exact (Ricci-closed) modular manifold if and only if the390

1-form
[

2ρ̇(ρ̇−1)

ρ2ρ̈
− 1

ρ

]

dr is an exact (closed) form.391

3.2 Quasi-Constant Curvature Manifolds392

As in application VI let a unit form η ∈ �1(M) and ξ = η♯ ∈ X (M) its g-dual. The393

triple (M, g, ξ) with n = dim M ≥ 3 is called quasi-constant curvature manifold if394

there exists a, b ∈ C∞(M) such that the curvature tensor field is ([5, p. 237])395

R(X, Y ) = aX ∧g Y + b
[

η(X)Y ♭ − η(Y )X ♭
]

ξ + b [η(Y )X − η(X)Y ] η (3.7)396

with X ♭ the g-dual form of X ; we denote Mn
a,b(ξ) this manifold. It follows the Ricci397

tensor field398

S = [(n − 1)a + b]I + (n − 2)bη ⊗ ξ (3.8)399

and the scalar curvature400

R = (n − 1)(na + 2b). (3.9)401

In order to obtain a computable Jacobi-Ricci form, we introduce the following type402

of Mn
a,b(ξ):403

Definition 3.2 The quasi-constant curvature manifold is called special if404

(i) it is regular ([5, p. 238]): a + b 
= 0; and405

(ii) da and db are parallel with η i.e., there exists non-zero α, β ∈ C∞(M) such406

that407

da

α
=

db

β
= η. (3.10)408

We derive immediately the following:409

Proposition 3.3 The Jacobi-Ricci form of a special Mn
a,b(ξ) is the closed 1-form410

ωRic =
nα + 2β

a + b
η =

1

a + b
d(na + 2b). (3.11)411

In conclusion, a special Mn
a,b(ξ) is a closed modular manifold. In the particular case412

a = b > 0, we have that the special Mn
a,a(ξ) is an exact modular manifold with413

ωRic = n+2
2

d ln a and its last multipliers have the form f = fC = C
a

with C > 0.414
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Last Multipliers for Riemannian Geometries

3.3 Quasi-Einstein Manifolds415

Inspired by (3.8) the triple (Mn, g, ξ) as above is called quasi-Einstein manifold exists416

a, b ∈ C∞(M) such that the Ricci tensor field is417

S = aI + bη ⊗ ξ. (3.12)418

The given quasi-Einstein is called special if the conditions of definition 3.2 holds; the419

notion of regular quasi-Einstein manifold was introduced in [14, p. 363].420

Since the scalar curvature of a quasi-Einstein manifold is R = na + b it follows:421

Proposition 3.4 The Jacobi-Ricci form of a special quasi-Einstein Mn
a,b(ξ) is the422

closed 1-form423

ωRic =
nα + β

a + b
η =

1

a + b
d(na + b). (3.13)424

In conclusion, a special quasi-Einstein Mn
a,b(ξ) is a closed modular manifold. In the425

particular case a = b > 0, we have that the special quasi-Einstein Mn
a,a(ξ) is an426

exact modular manifold with ωRic = n+1
2

d ln a and its last multipliers have the form427

f = fC = C
a

with C > 0.428

3.4 Ricci solitons429

The vector field V of application IV) is a generator of a Ricci soliton on (M, g) if430

there exists a scalar λ such that ([14, p. 362])431

LV g + 2Ric + 2λg = 0. (3.14)432

Then (LV g)♯ = −2(S + λI ) and tracing (3.14) we obtain the divergence of V433

divV = −R − λn. (3.15)434

The Lemma 1.10 of [8, p. 6] states that V ♭ belongs to the kernel of �+ S and then the435

Schrödinger–Ricci equation (2.9) admits V ♭ as solution if and only if V is divergence-436

free or equivalently R is constant:437

Proposition 3.5 Let (M, g, V, λ) be a Ricci soliton with constant scalar curvature438

and non-degenerate Ricci tensor. Then ωRic = 0 and the maps Q and (LV g)♯ :439

(T M, gC ) → (T M, gC ) are harmonic. More generally, if the given data are an440

almost Ricci soliton i.e., λ is a smooth function then the second harmonicity holds if441

and only if the function R + nλ is a constant.442

For the gradient Ricci solitons, V = ∇u, the formula (1.27) of [8, p. 8] (which is443

the same with (1.31) of page 9) states that444
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S(du) =
1

2
d R (3.16)445

and then the following:446

Proposition 3.6 The Jacobi-Ricci form of a gradient Ricci soliton (M, g, u, λ) is447

ωRic = d(2u) (3.17)448

and then (M, g) is a Ricci-exact modular manifold with the last multipliers of Ric449

having the form450

f = fC = C exp(−u). (3.18)451

For the example of Gaussian soliton (M, g) = (Rn, can), we have u(x) = −λ
2
‖x‖2

452

which yields fC (x) = Ce
λ
2 ‖x‖2

with ‖ · ‖ the Euclidean n-norm and arbitrary scalar453

λ. Let us remark that the proper setting for the data (M, g, u) of this paper is the454

smooth metric measure space (M, g, exp(−u)dµg) with dµg the canonical volume455

form (measure) induced by g; another usual name is that of weighted manifold conform456

[15,16]. It follows that for a gradient Ricci soliton its associated metric measure space457

has the volume form458

µu
g := exp(−u)dµg = f1dµg (3.19)459

with f1 the (unit) last multiplier of Ric from (3.18) and the Bakry-Emery Ricci tensor460

(2.14) is self-adjoint with respect to the L2-inner product of functions using this461

measure. Also, the diffusion operator of this space, called weighted Laplacian462

�u · = eudiv(e−u∇·) = � − g(∇u,∇·), (3.20)463

can be expressed in terms of last multipliers and weighted divergence (1.10) as464

�u F =
1

f1
div( f1∇F) = div f1(∇F) (3.21)465

for any smooth function F on M . For the example of a closed M , the Perelman’s466

energy functional is [8, p. 191]467

F(g, u) :=

∫

M

(R + ‖∇u‖2
g)e

−udµg (3.22)468

which469

(a) in terms of last multipliers it becomes470

F(g, u) =

∫

M

(R + ‖d ln f1‖
2
g) f1dµg (3.23)471
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Last Multipliers for Riemannian Geometries

(b) can be generalized to arbitrary Z -solitons (2.17) through472

F(g, Z , u) :=

∫

M

(T rg Z + ‖∇u‖2
g)e

−udµg. (3.24)473

Returning to the general case of proposition 3.5, let us remark that for a constant474

scalar curvature the tensor field (LV g)♯ is zero in the steady situation: λ = 0. Indeed,475

with the Lemma 1.11 of [8, p. 6] we have476

�R + 2‖Ric‖2 = V (R) − 2λR (3.25)477

and hence a constant R yields478

S(du) = 0, ‖Ric‖2 = −λR (3.26)479

which means that du is a zero of S and if λR 
= 0 then R and λ have opposite sign;480

let us point out that this fact holds for a general (i.e., with R not a constant) shrinking481

(λ < 0) closed Ricci soliton from Proposition 1.13 of [8, p. 7]. For λ = 0, it results482

Ric = 0 i.e., (M, g) is Ricci-flat and the definition (3.14) gives that V is a Killing483

vector field.484

In [4], it is proved that compact almost Ricci solitons with constant scalar curvature485

are gradient. Non-steady gradient Ricci solitons with constant scalar curvature are486

studied in [19] where a main consequence of the constancy of R is the fact that the487

potential function u is an isoparametric one meaning that its level sets are parallel488

hypersurfaces of constant principal curvatures and hence constant mean curvature.489

Then the last multipliers (3.18) of Ric are also isoparametric functions.490

The general case (not necessary compact or gradient) of non-steady Ricci solitons491

with constant scalar curvature R on complete Riemannian geometries can be described492

with the classification provided by Theorem 8.2 of [2, p. 463]:493

(I) expanding (λ > 0). We have −nλ ≤ R ≤ 0 and494

(I1) if R = −nλ then V is Killing vector field and (M, g) is Einstein,495

(I2) if R = 0 then V is a homothetic vector field and (M, g) is Ricci-flat.496

II) shrinking (λ < 0). We have 0 ≤ R ≤ −nλ and497

(II1) if R = 0 then V is a homothetic vector field and (M, g) is flat,498

(II2) if R = −nλ then V is Killing vector field and (M, g) is a compact Einstein499

manifold.500

It follows that a proper (LV g)♯, i.e., not a constant multiple of Kronecker tensor, is501

attained for possible intermediary values R ∈ (−nλ, 0), respectively, R ∈ (0,−nλ). In502

the gradient case, from Theorem 1 of [19], it results that only the intermediary discrete503

values are possible: R ∈ {−(n − 1)λ, . . . ,−λ}, respectively, R ∈ {−2λ, . . . ,−(n −504

1)λ} which excludes the dimension n = 2 and fixes the value R = −2λ for dimension505

n = 3 in the shrinking case; from (3.15) it results that the Laplacian of u is constant.506

Also, from Theorem 2 of the cited paper, the complete non-steady gradient Ricci507

solitons with non-degenerate Ricci tensor having the constant rank n are rigid which508
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means that (M, g) is isometric to N ×Ŵ R
k where N is Einstein, R

k has the Gaussian509

soliton structure and Ŵ acts freely on N and by orthogonal transformations on R
k .510

Concerning the level sets Su
c : u = c ∈ R of the potential function u of a gradient511

Ricci soliton (with non-constant R) let us remark from (3.18) that these coincide512

with the level sets S
fC

Ce−c of the last multiplier fC . Also, from (3.16) and the non-513

degeneration of S, it results that the level sets of u coincide with the level sets of R.514

Let I Ic be the second fundamental form of Su
c supposing that u is strictly convex. With515

the computations of [10] we have516

I Ic =
−1

‖∇u‖g

· Hu =
−| f1|

‖d ln f1‖g

Hu (3.27)517

which becomes for our setting:518

I Ic =
2

‖ωRic‖g

(Ric + λg). (3.28)519

3.5 Spheres520

Let Sn(r) be the n-dimensional sphere with its canonical metric g of constant curvature521

c = 1
r2 . It is well known that its Laplacian spectrum has the first positive eigenvalue522

λ1 = n with the multiplicity n and eigenvectors u ∈ C∞(Sn(r)) called first-order523

spherical harmonics. These functions appear in the Obata characterization of the524

Euclidean sphere.525

So, for a first spherical harmonic u we have526

H(u) = −
u

r2
g, H(u)−1

♯ = −
r2

u
I (3.29)527

and528

�u = −
n

r2
u, divH(u) = −

du

r2
. (3.30)529

It follows the Jacobi form associated to H(u)530

ωH(u) = H(u)−1
♯ (divH(u)) =

du

u
= d(ln u) (3.31)531

and then (Sn(r), g, H(u)) is an exact-modular manifolds with the last multipliers for532

H(u) having the form533

f = fC =
C

u
. (3.32)534
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Last Multipliers for Riemannian Geometries

4 Conformal and Curvature Deformations535

Returning to the general setting let u ∈ C∞
+ (M) be fixed. The aim of this section is to536

compare the Jacobi form of the triples (M, g, Z) and (M, g̃ := ug, Z). Let us remark537

that the (1, 1)-version of Z with respect to g̃ is Z̃♯ = 1
u

Z♯ and hence Z̃−1
♯ = u Z−1

♯ .538

With the well-known formula for the difference between the Levi-Civita connection539

of g̃ and g ([27, p. 156]), we derive540

2(divg̃ Z − divg Z) = nZ♯(d ln u) − (T r Z ♯)d ln u (4.1)541

where T r Z ♯ is the trace of Z ♯; in a local chart we have T r Z ♯ =
∑n

i=1 Z i
i . Then the542

tilde Jacobi form ω̃Z := Z̃−1
♯ (divg̃ Z) is543

ω̃Z = uωZ +
1

2
[ndu − (T r Z ♯)Z−1

♯ (du)] (4.2)544

which yields the following:545

Proposition 4.1 Suppose that Z ∈ T 0
2,s(M) is non-degenerate and traceless.546

i. If (M, g, Z) is a closed modular manifold and du is parallel to ωZ , i.e., du∧ωZ =547

0, then (M, g̃, Z) is also a closed modular manifold.548

ii. In particular, suppose that (M, g, Z) is an exact modular manifold with the poten-549

tial u. Then (M, g̃, Z) is also an exact modular manifold with the potential u2+nu
2

.550

Let us remark that the subspace T 0
2,s,t (M) ⊂ T 0

2,s(M) of traceless tensors appears551

naturally in our study. Indeed, it is well known that pointwise we have that T 0
2,s(M)552

splits into O(Tx M)-irreducible subspaces as T 0
2,s(M) = T 0

2,s,t (M)⊕Rg; in the words553

of [27, p. 110]: the homotheties and traceless matrices are perpendicular.554

In the second part of this section, we study the case of curvature deformation. Recall555

that g yields the curvature operator:556

Rg : T
0

2,s(M)→T
2

0,s(M), Z =(Zi j )→ Rg(Z)=(Rg(Z)i j := Riabj Zab). (4.3)557

The symmetries of the (0, 4)-curvature tensor field Riem = (Ri jkl) guarantee that558

this operator is proper defined; remark also that Rg is a g-self-adjoint operator on559

T 0
2,s(M).560

For a fixed Z , the (1, 1)-variant of its curvature transformation Rg(Z) is561

Rg(Z)k
j = gki Rg(Z)i j = gki Ribcj Zbc = gki R jbci Zbc = Rk

jbc Zbc (4.4)562

and then563

Rg(Z)k
j |i = Rk

jbc|i Zbc + Rk
jbc Zbc

|i . (4.5)564

123

Journal: 12220 Article No.: 9775 TYPESET DISK LE CP Disp.:2017/2/10 Pages: 26 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

M. Crasmareanu

It follows the j-component of divergence of the curvature transformation:565

[divRg(Z)] j =

n
∑

i=1

[Ri
jbc|i Zbc + Ri

jbc Zbc
|i ]. (4.6)566

With the second Bianchi identity ([2, p. 17]) it follows that567

n
∑

i=1

Ri
jbc|i = R jc|b − R jb|c (4.7)568

and due to the symmetry of Z we have569

[divRg(Z)] j =

n
∑

i=1

Ri
jbc Zbc

|i (4.8)570

which means globally571

[divRg(Z)](X) = Trace
[

(U, V ) → g(R(X, U )V, (∇ Ẑ)(U, V ))

]

(4.9)572

with Ẑ = (Zab) the contravariant version of Z .573

5 Curvature Last Multipliers and the General Case of Tensors574

It is well known that the divergence of the Riemannian curvature tensor is ([27, p. 104])575

(divRiem)(X, Y, Z) = (∇X Ric)(Y, Z) − (∇Y Ric)(X, Z) (5.1)576

for any vector fields X , Y , and Z . We introduce a new class of last multipliers:577

Definition 5.1 The function f ∈ C∞
+ (M) is called curvature last multiplier for g if578

f Riem is divergence-free or, in other words, the tensor field f Riem is conservative579

or (M, g) has harmonic curvature.580

A direct computation gives581

div( f Riem)(X, Y, Z) = f (divRiem)(X, Y, Z) + R(X, Y )Z( f ) (5.2)582

and then f is a curvature last multiplier if and only if the following Liouville equation583

holds for any X , Y and Z :584

Riem(X, Y )Z(ln f ) = (∇Y Ric)(X, Z) − (∇X Ric)(Y, Z). (5.3)585

In particular, if Ric is a Codazzi tensor i.e., the right-hand side of (5.3) is zero then586

f is a first integral of the curvature: Riem(X, Y )Z( f ) = 0 for all X , Y , and Z ; this587
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Last Multipliers for Riemannian Geometries

equation appears for a problem concerning the vertical lift of a Killing potential in588

Proposition 11 of [11, p. 175]. For example, if (M, g) is a space-form Mn
c i.e., it has589

the constant curvature c then the only functions satisfying the last equations are the590

constants.591

At this moment, we have discussed the last multipliers f of three types of tensor592

fields:593

(1) vector field X ∈ T 1
0 (M); the Liouville equation of f is ([12, p. 458])594

X (ln f ) = −divX (5.4)595

which means596

d(ln f ) ◦ X = −divX. (5.5)597

(2) endomorphism F ∈ T 1
1 (M); the Liouville equation is the contravariant version598

of (1.5)599

d(ln f ) ◦ F = −divF (5.6)600

and for a non-degenerate F one have the Jacobi form: ωF := divF ◦ F−1.601

(3) curvature Riem ∈ T 1
3 (M); again the Liouville equation (5.3) reads as602

d(ln f ) ◦ Riem = −divRiem. (5.7)603

Concerning the gradient vector fields X = ∇u and complete metrics g with Theo-604

rem 2.18 from [2, p. 126], we have that any nonnegative and div f -superharmonic605

u ∈ C2(M) ∩ L1(M, f dVg) is constant if (M, g) is div f |gradients-stochastically606

complete.607

These cases yield the following general definition:608

Definition 5.2 Let T ∈ T 1
k (M, g)be fixed and f ∈ C∞

+ (M). f is called last multiplier609

of T with respect to g if the Liouville equation holds610

d(ln f ) ◦ T = −divgT, (5.8)611

which means the vanishing of the drift (or drifting) divergence: div f T := 1
f
div( f T ).612

The both members of Liouville equation belongs to T 0
k (M) and following the terms613

of item ii) of Remarks 1.4 we say that T is f -divergence-free with respect to g or f -614

conservative with respect to g. If f1 and f2 are two last multipliers it follows that the615

image of T is a subspace in the annihilator of the exact 1-form d(ln
f2

f1
).616

For example let α ∈ �k(M) and T = ∇α ∈ T 0
k+1(M, g) ≃g T 1

k (M, g). The617

Weitzenböck formula is ([29, p. 303])618

�α = −divT + ρ(α) (5.9)619
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M. Crasmareanu

and then the Liouville equation for T is620

d(ln f ) ◦ (∇α) = �α − ρ(α). (5.10)621

In particular, for a harmonic k-form we have d(ln f ) ◦ (∇α) = −ρ(α).622

6 Last Multipliers with Respect to Dirichlet Forms623

Returning to equation (5.5) if X = ∇u then we get the relation (3.2) of [12, p. 462]:624

g(∇u,∇(ln f )) = −�u. (6.1)625

This relation permits to define last multipliers in the setting of Dirichlet forms.626

More precisely, let M be a connected locally compact separable space and let µ be627

a positive Radon measure on M . Fix E a regular and strongly local Dirichlet form on628

M with domain D ⊂ L2(M, dµ) i.e., E is a positive, symmetric, closed bilinear form629

on L2(M, µ) such that unit contractions operate on E , [20]. This form E admits an630

energy measure Ŵ such that631

E(u, v) =

∫

M

dŴ(u, v) (6.2)632

for u, v ∈ D. Let also A be the self-adjoint operator uniquely associated with the633

Dirichlet space (M, E, L2(M, dµ))634

E(u, v) = (Au, v) :=

∫

M

(−Au)vdµ (6.3)635

for u ∈ D(A) = D and v ∈ D. The well-known example is that of Riemannian636

manifolds (M, g) where637

dŴ(u, v) = g(∇u,∇v)dµg, A = � (6.4)638

with dµg the Riemannian measure. Hence (6.1) can be written as639

Eg(u, 1) =

∫

M

(−�u)dµg =

∫

M

dŴ(u, ln f ) = Eg(u, ln f ). (6.5)640

We arrive at the following general definition:641

Definition 6.1 Let the Dirichlet space (M, E, L2(M, dµ)) and u ∈ D. The positive642

m ∈ D is called a last multiplier for u if643

E(u, 1) = E(u, m). (6.6)644
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Last Multipliers for Riemannian Geometries

For an arbitrary v ∈ D the previous relation becomes645

E(u, v) =

∫

M

vdŴ(u, m) (6.7)646

while the linearity of E gives the following form of (6.6) which we call Liouville647

equation for u648

E(u, m − 1) = 0. (6.8)649

If E possesses the local property then the hypothesis supp[u] ∩ supp[m − 1] = ∅650

implies (6.8) where, as usual, supp[u] denotes the support of the measure u · µ.651

Example 6.2 As in example 1 of [28, p. 57] on the manifold M let us consider a652

measure µ with positive smooth density with respect to the Lebesgue measure on653

each local chart. Fix also the smooth vector fields {X1, ..., Xr } and we define the654

operator655

Ŵ(u, v) =

r
∑

i=1

X i (u)X i (v) (6.9)656

and E through (6.2). Hence m ∈ C∞
+ (M) is a last multiplier for a fixed u if and only657

if658

r
∑

i=1

X i (u)X i (m) = 0. (6.10)659

For example, if all X i admit a common first integral m then m is an “universal last660

multiplier” i.e., last multiplier for all u. ⊓⊔661

A main source of Dirichlet forms is provided by symmetric Markov diffusion662

semigroups as it is pointed out in [3]. Fix now a symmetric Markov semigroup P =663

(Pt )t≥0 with the infinitesimal generator given by664

L f := lim
tց0

1

t
(Pt ( f ) − f ) . (6.11)665

The associated Bakry-Emery carré du champ is666

Ŵ( f, g) :=
1

2
(L( f g) − gL f − f Lg) (6.12)667

and we recall the Definition 1.11.1 of [3, p. 43]:668

Definition 6.3 L is a diffusion operator if669

Lψ( f ) = ψ ′( f )L f + ψ ′′( f )Ŵ( f, f ) (6.13)670
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M. Crasmareanu

for every ψ : R → R of class at least C2 and every suitable smooth function f .671

The more used example of symmetric Markov diffusion semigroups is provided by672

a Riemannian manifold (M, g) with L being the Laplacian � = �g and Ŵg(u, v) =673

g(∇u,∇v). Remark hence that the Eq. (6.1) reads674

0 = f �u + g(∇u,∇ f ) = f Lu + Ŵ(u, f ) (6.14)675

and then we arrive at the following notion of last multiplier:676

Definition 6.4 Let SM DS = (P, L , Ŵ) be a symmetric Markov diffusion semigroup677

and a fixed u. Then f is a last multiplier for u with respect to SM DS if678

f Lu + Ŵ(u, f ) = 0. (6.15)679

which we call the Liouville equation for u.680

Fix now a function ψ : R → R as in Definition 6.3 and search for f as being ψ(u):681

Proposition 6.5 Let � =
∫

ψ be the antiderivative of ψ . Then f = ψ(u) is a last682

multiplier of u with respect to the given SMDS if and only if �(u) is L-harmonic:683

L�(u) = 0.684

Proof The diffusion property (6.12) yields for our f as follows:685

L�(u) = f Lu + ψ ′(u)Ŵ(u, u), (6.16)686

while the relation (1.11.5) of [3, p. 44] gives the chain rule687

ψ ′(u)Ŵ(u, u) = Ŵ(u, ψ(u) = f ). (6.17)688

Hence the Liouville expression becomes689

f Lu + Ŵ(u, f ) = L�(u), (6.18)690

and we have the conclusion. ⊓⊔691

Remark 6.6 In Proposition 3.1 of [12, p. 463], we obtain that in a Riemannian geom-692

etry (M, g) a given function u is last multiplier for its gradient ∇gu if and only if u2
693

is a harmonic function. It follows that this example is provided by the last proposition694

with ψ being the identity function.695
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