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Abstract: A real univariate polynomial is called hyperbolic or stable if all its roots are real. We search
for hyperbolic polynomials of two and three degrees by using the Wronskian map W and a dual
map to W called Leibniz, since it involves the classical Leibniz rule for the derivative of a product of
functions. In addition to hyperbolicity, we use these two methods to search for a class of polynomials
introduced by the first author and now called weak Euclidean.
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1. Introduction

We recently introduced, in the paper in [1], the notion of a Euclidean polynomial. We
now refine this concept as follows.

Definition 1. The polynomial

P(X) = Xn + a1Xn−1 + . . . + an−1X + an ∈ Rn[X], n ≥ 2 (1)

with complex roots x1, . . . xn is called weak Euclidean if the following equality holds:

x2
1 + . . . + x2

n = a2
1 + . . . + a2

n. (2)

For such a polynomial P, we call the positive number E(P) = a2
1 + . . .+ a2

n ≥ 0 its Euclidean norm.
In addition, if P is hyperbolic, that is, all its roots are real (see [2]), then P will be called Euclidean.

Regarding this concept, we note the following:

Remark 1. (1) When P, as defined above, runs through the set Re
n[X] of Euclidean polynomials

of degree n, the map (a1, . . . an) ∈ Rn 7→ (x1, . . . xn) ∈ Rn gives an Euclidean correspondence
between the relevant subsets of Rn.

(2) For any fixed pair (n, a) ∈ Z≥2 ×R+, there is at least one Euclidean polynomial Pa ∈
Rn[X] with the given norm E(Pa) = a. One such example is

Pa(X) = Xn−1(X −
√

a). (3)

(3) In [1], the following geometric characterization involving the standard unit (n − 2)-sphere
Sn−2 in Rn−1 for weak Euclidean polynomials is given. The polynomial P ∈ Rn[X] is weak
Euclidean if and only if

(a2 + 1, a3, . . . , an) ∈ Sn−2. (4)

We point out that this characterization implies that a2 ≤ 0 and it is independent of the
coefficient a1, the negative of the sum of roots of P. In particular, for Pa(X) = Xn−1(X −

√
a), one

observes that (1, 0, . . . , 0) ∈ Sn−2.
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(4) More generally, for the polynomial P in (1), we define its Euclidean defect as

ED(P) := (a2
1 + . . . + a2

n)− (x2
1 + . . . + x2

n) ∈ R. (5)

Hence, P is weakly Euclidean if and only if ED(P) = 0. From the inequality between the
arithmetic and geometric means, we have that

ED(P) ≤ a2
1 + . . . + a2

n − n n
√

a2
n. (6)

This gives the following necessary condition: If a2
1 + . . . + a2

n ≥ n(an)
2
n , then P is weakly

Euclidean.
(5) It is well known that the characteristic polynomial of a symmetric matrix Γ with real entries

is real-rooted. So, we can call Γ a (weak) Euclidean if its characteristic polynomial is so.
(6) The hyperbolic polynomials and their multivariate generalization (called Garding hyper-

bolic; see, for example, [3]) appear in a natural way in various mathematical settings from real
algebraic geometry and discrete mathematics to PDEs and (polynomial) optimization. So, there is
an increasing scientific interest in producing and studying some classes of hyperbolic polynomials.

In an effort to investigate these classes of polynomials, one can start studying methods
to obtain remarkable elements in the set Rh

n[X] of hyperbolic polynomials; recall after [4]
that this set is a basic semialgebraic set. The aim of the present note is to find hyperbolic
polynomials of low degrees by using two maps, the Wronksian and a dual one, which we
call Leibniz. Recall that given two C1-maps f , g : I ⊂ R → R, their Wronskian is the map
W( f , g) : I → R, given by

W( f , g) :=
f g
f ′ g′

= f g′ − f ′g. (7)

So, the dual map will be L( f , g) : I → R, given by L( f , g) := f g′ + f ′g = ( f g)′. We
point out that the idea to use the Wronskian map was inspired by the excellent book [5],
where the Schapira Theorem concerning the Wronskian of a set of polynomials is discussed;
see also page 338 of [6].

Hence, since all polynomials of one degree are already Euclidean, we search for
hyperbolic and weak Euclidean polynomials of two and three degrees generated by these
maps applied to polynomials of these degrees. We point out that our work is oriented
mainly toward examples, and hence, sometimes the class of palindromic or reciprocal
polynomials is involved in our computations.

The contents of this paper are as follows. Section 2 studies the pairs (P1 ∈ R2[X], P2 ∈
R1[X]). Some of the examples from this section are connected with the splitting problem,
with an example from the Schapira Theorem and with the cubic palindrome. Section 3 has
two subsections according to the cases (P1 ∈ R3[X], P2 ∈ R1[X]), respectively, both P1 and
P2 ∈ R2[X]. Since this section deals with cubic polynomials, special attention is oriented
to the depressed expressions. The fourth section concerns the palindromic cubic case
obtaining the polynomial (x + 1)3 as a fixed point for both partial Wronskian and Leibniz
maps. We also note that in sections two and three, some partial Wronskian and Leibniz
maps are described as affine maps, and moreover, for the cubic cases, an associated elliptic
curve is given with its lattice points. In the next section, we introduce a particular sequence
{Pn ∈ Rn[X]; n ∈ N∗} of polynomials, which we call Rodrigues, since all polynomials are
generated by a given quadratic polynomial G through a Rodrigues-type formula; the class
of Legendre polynomials is our basic example. The computations of the previous sections
are applied for P1 and P2. The last section concerns the conclusions and presents an open
problem: the interesting question raised by one of the referees of whether some of the
studied polynomials can be characterized through differential equations.
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2. The Second Degree

The second degree is provided in our approach by the polynomials P1(X) = X2 +
aX + b ∈ R2[X] and P2(X) = X + c ∈ R1[X], and we directly obtain

Proposition 1. The negative Wronskian of P1 and P2 is

−W(P1, P2)(X) = X2 + 2cX + (ac − b), E(−W(P1, P2)) = 4c2 + (ac − b)2 (8)

which is a hyperbolic polynomial if and only if c2 − ac + b ≥ 0. The equality case of this condition
means that the dual polynomial of P1, namely P∗

1 (X) = X2 − aX + b, is a hyperbolic one and c is
one of its roots. If ac = b, then the polynomial −W(P1, P2) is Euclidean.

Example 1. (1) If c = 0, then the polynomial −W(P1, X) is hyperbolic if and only if b ≥ 0. In
particular, if a = c = 0 and b = u2 > 0, then the non-hyperbolic P1(X) = X2 + u2 is transformed
through the map −W(·, X) into the hyperbolic polynomial (X − u)(X + u).
The weak Euclidean polynomials of two degrees are given by b ∈ {0,−2}, and hence, the weak
Euclidean P1(X) = X2 + aX − 2 is transformed by −W(·, X) into the non-hyperbolic X2 + 2.
In conclusion, the map −W(·, X) does not preserve the set Rh

2[X], nor the complementary set
R2[X] \Rh

2[X].
(2) If a = 0, then the hyperbolicity reduces to c2 + b ≥ 0, and then the trivial hyperbolic

(and Euclidean) P1(X) = X2 is transformed by the map −W(·, X + c) into the hyperbolic (and
Euclidean) polynomial X(X + 2c).

(3) If the initial polynomial P1 is a hyperbolic one with the roots α, β ∈ R, then the hyperblicity
condition for −W(P1, P2) reads c2 + c(α + β) + αβ ≥ 0.
An important source of strictly hyperbolic polynomials (i.e., having all real and distinct roots) is the
splitting problem for a pair (a given prime number p, a monic polynomial f ∈ Zn[X]), which we
present after [7]. Reducing the coefficients of f modulo p gives a new polynomial fp, which may be
reducible. Then, f admits a p-splitting if fp is the product of distinct linear factors. For example,
let 1 ≤ q ≤ p − 1 and f q(X) = X2 + q. Then, f q admits a p-splitting if and only if there exists
u, v ∈ Z such that the polynomial f q,u,v(X) = X2 + (−up)X + (vp + q) is strictly hyperbolic
with the discriminant ∆ = w2 for w ∈ N+ := {1, 2, 3, ...}.

Example 1.1.1. of the paper in [7] concerns q = 1, and the list of available p begins with
5, 13, 17, .... Indeed, for p = 5, we have the data (u = 1, v = 1 = w, α = 2, β = 3), while for
p = 13, we have the data (u = 1, v = 3 = w, α = 5, β = 8).

Concerning the second map, we have

Proposition 2. The Leibniz map of P1 and P2 satisfies

1
3

L(P1, P2)(X) = X2 +
2
3
(a + c)X +

1
3
(ac + b), (9)

which is a hyperbolic polynomial if and only if (a + c)2 − 3(ac + b) ≥ 0 and weak Euclidean if and
only if ac + b ∈ {0,−6}. Hence, if ac + b = 0, then 1

3 L(P1, P2) is an Euclidean polynomial.

Example 2. If the initial P1 is a hyperbolic one with b ≥ 0, then the polynomial 1
3 L(P1, X) is

also hyperbolic, since then a2 ≥ 4b ≥ 3b. In the Euclidean particular case of b = 0, we obtain an
Euclidean 1

3 L(P1, X) if and only if ac ∈ {0,−6}.

Example 3. As we already mentioned in the Introduction, the Schapiro Theorem is discussed
and illustrated by an example on page 338 of the book in [6]. The example is as follows: The
initial complex polynomials P̃1(z) = (1 + i)z2 + (1 − i)z + 2, P̃2(z) = (1 − i)z2 + (1 + i)z + 2
have the Wronskian −4i(z2 + 2z − 1) with the real roots −1 ±

√
2. Hence, the linear subspace

span{P̃1, P̃2} of C2[z] is also generated by the polynomials Q1(z) = z2 + 1, Q2(z) = z+ 1 having
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all real coefficients. If we transfer Q1 and Q2 into our P1 (which is non-hyperbolic) and P2, it results
the coefficients a = 0, b = c = 1, and then

−W(P1, P2) = X2 + X − 1 ∈ Rh
2[X],

1
3

L(P1, P2)(X) = X2 +
2
3

X +
1
3

/∈ Rh
2[X]. (10)

It is amazing that the dual ∗ of the first polynomial is exactly X2 − X − 1, having as positive
root the Golden ratio ϕ; see ([1], p. 65).

An interesting class of hyperbolic polynomials consists in polynomials with their roots lying in
an interval of length ≤ 4. The above roots −1 ±

√
2, although for a complex polynomial, satisfy

this condition, since 2
√

2 < 4.

Example 4. The palindromic cubic polynomial P(X) = uX3 + vX2 + vX + u, u ̸= 0 has the real
root −1, and then it has the decomposition P(X) = (X + 1)[uX2 + (v − u)X + u] and, dividing
by u, it follows our polynomial P1 with a = v

u − 1, b = 1. The initial cubic polynomial P is
hyperbolic if and only if ∆ = (v − 3u)(v + u) ≥ 0, which means that a ∈ [−∞,−2] ∪ [2,+∞].
The limit case a = ±2 corresponds to the hyperbolic cubic P(X) = u(X ± 1)3.

Example 5. Fix the polynomial P(X) = X2 + aX + b ∈ R2[X] and its derivative P′(X) =
2X + a ∈ R1[X]. The Wronskian of P is, by definition, the Wronskian W(P, P′), and we obtain

−1
2

W(P)(X) = X2 + aX +

(
a2

2
− b

)
(11)

which is hyperbolic if and only if 4b ≥ a2, and hence, a necessary condition for hyperbolicity of
W(P) is b ≥ 0. Also, we have that P and W(P) are simultaneously hyperbolic if and only if P is
the square P(X) =

(
X + a

2
)2

= − 1
2 W(P)(X). The polynomial − 1

2 W(P) is weak Euclidean if
and only if a2 − 2b ∈ {0,−4}.

Remark 2. The transformations −W(·, P2), 1
3 L(·, P2) can be viewed as affine maps as follows:

−W(·, P2) : R2 → R2,
(

a
b

)
→

(
0 0
c −1

)(
a
b

)
+

(
2c
0

)
, (12)

respectively,

1
3

L(·, P2) : R2 → R2,
(

a
b

)
→

(
2/3 0
c/3 1/3

)(
a
b

)
+

(
2c/3

0

)
. (13)

3. The Third Degree

The case of the third degree can be obtained in two ways: firstly from the pair (P1(X) =
X3 + aX2 + bX + c ∈ R3[X], P2(X) = X + d ∈ R1[X]) and secondly from the pair (P1(X) =
X2 + aX + b ∈ R2[X], P2(X) = X2 + cX + d ∈ R2[X]). We recall the discussion of the
depressed cubic equation:

y3 + py + q = 0, D = D(p, q) :=
p3

27
+

q2

4
. (14)

Namely, if the determinant D < 0, the cubic equation has three distinct real solutions, while
if D = 0, then the equation has three real solutions, out of which two are equal; for details,
see [8].

3.1. The First Pair (P1, P2)

We begin with the Wronskian map.
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Proposition 3. For the Wronskian of the first pair, we have

−1
2

W1(P1, P2)(X) = X3 +
1
2
(a + 3d)X2 + adX +

1
2
(bd − c). (15)

The translation X = Y − a+3d
6 gives the depressed cubic polynomial{

− 1
2 W1(P1, P2)(Y) = Y3 + pY + q, p = − (a−3d)2

12 ≤ 0,

q = (a+3d)3

3·62 − ad(a+3d)
6 + bd−c

2 .
(16)

As an affine map, the transformation − 1
2 W1(·, P2) is a

b
c

 ∈ R3 →

 1/2 0 0
d 0 0
0 d/2 −1/2

 a
b
c

+

 3d/2
0
0

 ∈ R3,

and we point out that the 3 × 3 matrix belongs to the Lie algebra sl(3,R).

Example 6. If d = 0, then the coefficients and the determinant of the depressed cubic are

p = − a2

12
≤ 0, q =

a3

108
− c

2
, 16D = c

(
c − a3

27

)
, (17)

and the above map reduces to a linear one. There are two cases of a vanishing determinant.
Case 1: c = 0. We have the hyperbolic polynomial:

−1
2

W1(P1, X)(X) = X2
(

X +
a
2

)
= Y3 − a2

12
Y +

a3

108
. (18)

For a = 1, we can associate the following singular cubic curve:

y2 = −54W(P1, X)(x) = 108x3 − 9x + 1

which has 12 lattice points (0, ± 1), (1,±10), (5,±116), (8,±235), (16, 665), (21,±1000).
Case 2: c = u3 > 0 and a = 3u. We have the following polynomials:

P1(X) = X3 + 3uX2 + bX + u3,−1
2

W1(P1, X)(X) = X3 +
3u
2

X2 − u3

2
= Y3 − 3u2

4
Y − u3

4
. (19)

The Y-solutions of the second polynomial are u,− u
2 ,− u

2 . With u = 1, we associate the
following singular cubic curve:

y2 = −2W(P1, X)(x) = 4x3 − 3x − 1

with 11 lattice points: (1, 0), (2,±5), (5,±22), (10,±63), (17,±140), (26,±265).

Example 7. If a = 0, i.e., the initial P1 is depressed, then the coefficients and the determinant of the
resulted cubic are

p = −3d2

4
≤ 0, q =

bd − c
2

+
d3

4
, 16D = (bd − c)(bd − c + d3). (20)

The case c = bd of a vanishing D corresponds to the following hyperbolic cubic:

−1
2

W1(X3 + bX + bd, X + d)(X) = X2
(

X +
3d
2

)
= Y3 − 3d2

4
Y +

d3

4
. (21)

and Y-solutions of the last depressed cubic are −d, d
2 , d

2 .
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We now turn to the Leibniz map.

Proposition 4. For the Leibniz map of the first pair, we have

1
4

L1(P1, P2)(X) = X3 +
3
4
(a + d)X2 +

1
2
(b + ad)X +

1
4
(bd + c). (22)

The translation X = Y − a+d
4 gives the depressed cubic polynomial 1

4 L1(P1, P2)(Y) =
Y3 + pY + q with

16p = 8(b + ad)− 3(a + d)2, 64q = 16(bd + c) + 11(a + d)2 − 8(a + d)(b + ad). (23)

As an affine map, the transformation 1
4 L1(·, P2) is a

b
c

 ∈ R3 →

 3/4 0 0
d/2 1/2 0

0 d/4 1/4

 a
b
c

+

 3d/4
0
0

 ∈ R3.

Example 8. d = 0 reduces the above map to a linear one and gives 16p = 8b − 3a2, 64q =
16c + 11a − 8ab. In particular, if b = 0, then 16p = −3a2 ≤ 0.

3.2. The Second Pair (P1, P2)

The Wronskian map of the second pair yields a polynomial of two degrees, and hence,
we postpone this method to the end of this subsection.

Proposition 5. For the Leibniz map of the second pair, we have

1
4

L2(P1, P2)(X) = X3 +
3
4
(a + c)X2 +

1
2
(b + d + ac)X +

1
4
(ad + bc). (24)

The translation X = Y − a+c
4 gives the depressed cubic polynomial 1

4 L2(P1, P2)(Y) =
Y3 + pY + q with

16p = 8(b + d + ac)− 3(a + c)2, 32q = (a + c)3 + 8(ad + bc)− 4(a + c)(b + d + ac). (25)

Example 9. Suppose that both P1 and P2 are Euclidean with b = d = 0. Then,

16p = −3a2 + 2ac − 3c2 ≤ 0, 32q = (a + c)3 − 4ac(a + c) = (a + c)(a − c)2. (26)

Hence, there are two cases of a vanishing q and therefore a hyperbolic 1
4 L2(P1, P2):

Case 1: If a = c, i.e., P1 = P2, we obtain p = − a2

4 ≤ 0.
Case 2: If a = −c, then p = − a2

2 ≤ 0.

We return now to the Wronskian:

Proposition 6. The Wronskian map of the second pair is

W2(P1, P2)(X) = (a − c)X2 + 2(b − d)X + (bc − ad) (27)

which is a hyperbolic polynomial if and only if

(b − d)2 ≥ (a − c)(bc − ad). (28)

This condition holds for a = c when W2(P1, P2) is one degree.
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Example 10. Suppose that a ̸= c and P1, P2 are Euclidean with b = −2 and d = 0. The resulting
Wronskian is

W2(P1, P2)(X) = (a − c)X2 − 4X − 2c (29)

which is hyperbolic if and only if c(a − c) ≥ −2. For example, if P2 is exactly the dual P∗
1 , then

c = −a, and we obtain the following palindromic:

W2(P1, P2)(X) = 2(aX2 − 2X + a) (30)

which is hyperbolic if and only if a ∈ [−1, 1]; irrespective of the value of a, the roots of the
polynomial (30) are located in an interval of length < 4.

Example 11. Suppose that both P1 and P2 are hyperbolic with the roots (α, β) and (γ, δ), respec-
tively. Then, we have all the previous computations with

a = −(α + β), b = αβ, c = −(γ + δ), d = γδ. (31)

4. The Palindromic Cubic Revisited

We now apply the computations of the previous section to the palindromic Pp(X; a) =
X3 + aX2 + aX + 1 ∈ R3[X]. Proposition 3 gives

−1
2

W1(Pp, P2)(X) = X3 +
1
2
(a + 3d)X2 + adX +

1
2
(ad − 1), (32)

which is also palindromic if and only if a = 3 and d = 1. Hence, the following:

Proposition 7. The palindromic hyperbolic polynomial Pp(X) = X3 + 3X2 + 3X + 1 = (X + 1)3

is a fixed point of the map − 1
2 W1(·, X + 1).

Proposition 4 gives

1
4

L1(Pp, P2)(X) = X3 +
3
4
(a + d)X2 +

a
2
(d + 1)X +

1
4
(ad + 1) (33)

and the following:

Proposition 8. The palindromic hyperbolic polynomial Pp(X) = X3 + 3X2 + 3X + 1 = (X + 1)3

is a fixed point of the map 1
4 L1(·, X + 1).

The singular cubic curve y2 = (x + 1)3 again has 11 lattice points: (−1, 0), (0,±1),
(3,±8), (8,±27), (15,±64), (24,±125). With the translation X = x + 1, we have the
semicubical parabola y2 = X3.

Example 12. In the paper in [1], the case a = −1 is an example of a Euclidean cubic polynomial.
From (32) and (33), we have the following polynomials: W1(d)(X) = X3 + 3d−1

2 X2 − dX − d+1
2 ,

L1(d)(X) = X3 + 3(d−1)
4 X2 − d+1

2 X + 1−d
4

(34)

but both these polynomials are nonpalindromic. With the characterization in (4), we have that W1(d)
is weak Euclidean only for d± = 3±

√
19

5 , while L1(d) is weak Euclidean only for d± = 1 ± 4√
5

.

5. Rodrigues Sequences of Polynomials

Fix a quadratic polynomial G(X) = X2 + αX + β ∈ R2[X] and a sequence of polynomi-
als P := {Pn ∈ Rn[X]; n ∈ N∗}. Inspired by the theory of classical orthogonal polynomials
([9]), we introduce the following:
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Definition 2. The sequence P is called Rodrigues with respect to G if a Rodrigues-type for-
mula holds the following:

Pn(X) =
1
an

dn

dXn [G(X)]n, an =
1

(n + 1) · ... · (2n)
=

n!
(2n)!

. (35)

The coefficient an is chosen such that the coefficient of Xn in Pn is 1 and G can be called the
generator of P .

Example 13. The classical Legendre polynomials L := {Ln ∈ Rn[X]; n ∈ N∗} are provided by
the Rodrigues formula:

Ln(X) =
1

2nn!
dn

dXn [X
2 − 1]n, X ∈ [−1, 1]. (36)

Hence, choosing G(X) = X2 − 1 in the definition above, we obtain the modified Legendre
polynomials Lm

n = 2nn!
an

Ln.

Remark 3. Returning to the general Rodrigues sequence, the first two polynomials in P are

P1(X) = X +
α

2
, P2(X) =

1
6

L(G, G′)(X) = X2 + αX +
α2 + 2β

6
(37)

and then P2 = G if and only if 4β = α2, which means that G(X) = P2(X) =
(
X + α

2
)2.

The aim of this section is to discuss the results of Section 2 on our P1 and P2.

(I) Applying Proposition 1, we obtain that W(P1, P2) is hyperbolic if and only if

c2 − ac + b2 =
(α

2

)2
− α2

2
+

α2 + 2β

6
≥ 0 → 4β ≥ α2. (38)

Hence, W(P1, P2) and G are simultaneously hyperbolic if and only if 4β = α2, i.e.,
G(X) = P2(X) =

(
X + α

2
)2. If β = α2, the W(P1, P2) is a Euclidean polynomial.

W(Lm
1 , Lm

2 ) is not hyperbolic nor Euclidean.
(II) Applying Proposition 2, we have that 1

3 L(P1, P2) is hyperbolic if and only if

(a + c)2 − 3(ac + b) =
α2 − 4β

4
≥ 0. (39)

Therefore, 1
3 L(P1, P2) is hyperbolic if and only if the generator G is hyperbolic. If β =

−2α2, then 1
3 L(P1, P2) is a Euclidean polynomial, and 1

3 L(Lm
1 , Lm

2 ) is a non-Euclidean
hyperbolic polynomial.

6. Conclusions and Future Works

Testing whether a given real monic polynomial is of hyperbolic type is a complicated
job in general; see, for example, [10]. The main idea of the present study is that classes of
hyperbolic and weak Euclidean polynomials of two and three degrees are generated in a
unitary way through the Wronskian map and the Leibniz map. Special attention is given to
polynomials having additional properties, such as the palindromic property.

The present work is only the first step in a series of papers that propose methods to
obtain hyperbolic and weak Euclidean polynomials. One first future direction of study is to
increase the degrees of the involved polynomials. A second variant is to fix P2(X) = X + a
and to generate hyperbolic and weak Euclidean polynomials by using the Leibniz map
L(P1, P2) = (P1 · P2)

′ from the Introduction. A third subject of interest is to search if the Nuij
theorem ([4]) still works in the setting of weak Euclidean polynomials or possible variants of
this famous result. Finally, since this paper only addresses the mathematical aspects of the
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proposed methods, an interesting point of view is to study the computational/algorithmic
complexity of these methods.
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