Nonholonomic Lagrangians of third order: Equations of motion for the constrained Lagrangian

Mircea Crăşmăreanu

Abstract

The equations of motion for the associated Lagrangian to a nonholonomic Lagrangian of third order are computed and an example is given.

Subject Classification: 70H25, 70H35, 58F05.
Key words and phrases: Lagrangian of third order, Euler-Lagrange equations, nonholonomic constraints, constrained Lagrangian, constrained Euler-Lagrange equations.

Introduction

In the last years there is an increasing interest in nonholonomic mechanics especially from a geometrical point of view. Following the methodology of [2], where are treated nonholonomic Lagrangians of first order, we obtain the equations of motion in terms of the associated constrained Lagrangian of a nonholonomic Lagrangian involving velocities of third order. In [3] this problem is solved for Lagrangians of second order and the spinning particle is given as example.
This paper is dedicated to the memory of Romanian Academician Gheorghe Vrânceanu (1900-1979) who introduces in 1926 the notion of nonholonomic spaces, in order to give a geometrical approach to nonholonomic mechanics ([7], [8]). Note that the Romanian school of mathematics has an important contribution to this subject ([4], [7], [8], [9]).

1 Equations of motion

The starting point is a configuration-space given by a \(n \)-dimensional manifold \(Q \), for which we consider the tangent bundle of order three \(T^3 Q \) ([5], [6]). For coordinates \((q^i)_{1 \leq i \leq n} \) on \(Q \) we have the induced coordinates
\[
(q^i, q^{(1)i} = \frac{dq^i}{dt}, q^{(2)i} = \frac{d^2q^i}{dt^2}, q^{(3)i} = \frac{d^3q^i}{dt^3})
\]
on \(T^3 Q \).

Let us suppose that the evolution of the considered system is described by the following objects:

1. a third-order Lagrangian, that is a smooth map \(L : T^3 Q \rightarrow \mathbb{R} \) ([5], [6])
2. a set of \(p \) independent one-forms \((\omega^a(q))_{1 \leq a \leq p} \) whose vanishing gives the constraints of the system.

This 1-forms defines an \((n - p) \)-dimensional distribution \(D \) on \(Q \) i.e. \((\omega^a(q)) \) is a local basis of the annihilator \(D^0 \) of \(D \). Also, this constraints means that the only allowable velocities are the tangent vectors belonging to \(D \) or in other words the motion is constrained to the submanifold \(D \).

The Lagrangian \(L \) gives the Euler-Lagrange equations of order three ([5], [6]):
\[
\delta L = (EL)^{free}_i \delta q^i = 0 \quad (1.1a)
\]
with:
\[
(EL)^{free}_i = \frac{\partial L}{\partial q^i} - \frac{d}{dt} \left(\frac{\partial L}{\partial q^{(1)i}} \right) + \frac{d^2}{dt^2} \left(\frac{\partial L}{\partial q^{(2)i}} \right) - \frac{d^3}{dt^3} \left(\frac{\partial L}{\partial q^{(3)i}} \right) \quad (1.1b)
\]
and supposing that the constraints are nonholonomic, we can choose a local coordinate chart and a local basis for the constraints such that ([2, p. 31]):
\[
\omega^a(q) = ds^a + A^a_n (r, s) dr^a, \quad 1 \leq a \leq p \quad (1.2)
\]
where \(q = (r, s) \in \mathbb{R}^{n-p} \times \mathbb{R}^p \).
From (1.2) it results that:

$$\delta s^a + \frac{1}{A_a} \delta r^a = 0$$ \hspace{1cm} (1.3)

which, by substitution into (1.1) yields:

$$\frac{\partial L}{\partial r^a} - \frac{d}{dt} \left(\frac{\partial L}{\partial r^{(1)a}} \right) - \frac{d^2}{dt^2} \left(\frac{\partial L}{\partial r^{(2)a}} \right) - \frac{d^3}{dt^3} \left(\frac{\partial L}{\partial r^{(3)a}} \right) =$$

$$= A_a \left[\frac{\partial L}{\partial s^a} - \frac{d}{dt} \left(\frac{\partial L}{\partial s^{(1)a}} \right) + \frac{d^2}{dt^2} \left(\frac{\partial L}{\partial s^{(2)a}} \right) - \frac{d^3}{dt^3} \left(\frac{\partial L}{\partial s^{(3)a}} \right) \right].$$ \hspace{1cm} (1.4)

Equations (1.4) combined with the constraint equations:

$$s^{(1)a} = - \frac{1}{A_a} r^{(1)a}$$ \hspace{1cm} (1.5a)

$$s^{(2)a} = - \frac{d}{dt} \left(\frac{1}{A_a} r^{(1)a} \right) - \frac{1}{A_a} r^{(2)a}$$ \hspace{1cm} (1.5b)

$$s^{(3)a} = - \frac{d^2}{dt^2} \left(\frac{1}{A_a} r^{(1)a} \right) - 2 \frac{d}{dt} \left(\frac{1}{A_a} r^{(2)a} \right) - \frac{1}{A_a} r^{(3)a}$$ \hspace{1cm} (1.5c)

gives a complete description of the equations of motion. Remark that another form for (1.5b) is:

$$s^{(2)a} = \frac{2}{A_{a\beta}} r^{(1)a} r^{(1)\beta} - \frac{1}{A_a} r^{(2)a}$$ \hspace{1cm} (1.5b')

where:

$$\frac{2}{A_{a\beta}} (r, s) = \frac{\partial}{\partial s^b} \frac{A_{b\beta}}{A_a} - \frac{\partial}{\partial r^b} \frac{A_{b\beta}}{A_a}$$ \hspace{1cm} (1.6)

and another form of (1.5c) is:

$$s^{(3)a} = \frac{3}{A_{a\beta\gamma}} r^{(1)a} r^{(1)\beta} r^{(1)\gamma} + \frac{2}{A_{a\beta}} r^{(2)a} r^{(1)\beta} - \frac{1}{A_a} r^{(3)a}$$ \hspace{1cm} (1.5c')

where:

$$\frac{3}{A_{a\beta\gamma}} (r, s) = \frac{\partial}{\partial r^\gamma} \frac{2}{A_{a\beta}} - \frac{\partial}{\partial s^b} \frac{2}{A_{a\beta}} \frac{1}{A_\gamma}.$$

Following [2, p. 31] we define an associated \textit{constrained} Lagrangian L_c by substituting the constraints (1.5) into the Lagrangian L:

$$L_c \left(r^\alpha, s^a, r^{(1)\alpha}, r^{(2)\alpha}, r^{(3)\alpha} \right) \overset{def.}{=}$$

$$3$$
\[
L(r^\alpha, s^\alpha, r^{(1)\alpha}, -A^a_\alpha r^{(1)\alpha}, r^{(2)\alpha}, A^a_\alpha r^{(1)\alpha} r^{(1)\beta} - A^a_\alpha r^{(2)\alpha}, r^{(3)\alpha}, A^a_\alpha \beta r^{(1)\alpha} r^{(1)\beta} r^{(1)\gamma} + (2 A^a_\alpha + 2 A^a_\beta) r^{(2)\alpha} r^{(1)\beta} - A^a_\alpha r^{(3)\alpha}).
\]

A direct coordinates calculation shows:

\[
\frac{\partial L}{\partial r^\alpha} = \frac{\partial L}{\partial s^\alpha} \partial A^b_\beta \partial r^{(1)\beta} + \frac{\partial L}{\partial s^a} \left(\frac{\partial A^b_\beta}{\partial r^\alpha} r^{(1)\beta} r^{(1)\gamma} - \frac{\partial A^b_\beta}{\partial r^\alpha} r^{(2)\beta} r^{(1)\gamma} - \frac{\partial A^b_\beta}{\partial r^\alpha} r^{(3)\beta} \right) + \frac{\partial L}{\partial s^a} \left(\frac{\partial A^b_\beta}{\partial r^\alpha} r^{(1)\beta} r^{(1)\gamma} + (2 \frac{\partial A^b_\beta}{\partial r^\alpha} + \frac{\partial A^b_\beta}{\partial r^\alpha} r^{(2)\beta} r^{(1)\gamma} - \frac{\partial A^b_\beta}{\partial r^\alpha} r^{(3)\beta} \right) + (1.9a)
\]

\[
\frac{\partial L}{\partial s^a} = \frac{\partial L}{\partial s^a} - \frac{\partial L}{\partial s^a} \partial A^b_\beta \partial r^{(1)\beta} + \frac{\partial L}{\partial s^a} \left(\frac{\partial A^b_\beta}{\partial s^a} r^{(1)\beta} r^{(1)\gamma} - \frac{\partial A^b_\beta}{\partial s^a} r^{(2)\beta} r^{(1)\gamma} - \frac{\partial A^b_\beta}{\partial s^a} r^{(3)\beta} \right) + (1.9b)
\]

A long, but straightforward computation which uses the formulae:

\[
\frac{d}{dt} \frac{1}{A^a_\beta} = -2 A^b_\alpha r^{(1)\beta} \quad (1.10a)
\]

\[
\frac{d}{dt} A^b_\alpha = A^b_\alpha \gamma r^{(1)\gamma} \quad (1.10b)
\]
gives the equations of motion for \(L_c \):

\[
(EL)_{\alpha}^{\text{constraints}} = \left[\frac{\partial L}{\partial s^{(1)b}} - \frac{d}{dt} \left(\frac{\partial L}{\partial s^{(2)b}} \right) + \frac{d^2}{dt^2} \left(\frac{\partial L}{\partial s^{(3)b}} \right) \right] b^b_{\alpha\beta} r^{(1)\beta} + \\
+ \left(\frac{\partial L}{\partial s^{(2)b}} - \frac{d}{dt} \left(\frac{\partial L}{\partial s^{(3)b}} \right) \right) b^b_{\alpha\beta\gamma} r^{(1)\beta} r^{(1)\gamma} + \\
+ \frac{\partial L}{\partial s^{(3)b}} \left(b^b_{\alpha\beta\gamma\delta} r^{(1)\beta} r^{(1)\gamma} r^{(1)\delta} + b^b_{\alpha\beta\gamma} r^{(2)\beta} r^{(1)\gamma} \right)
\]

(1.11)

where:

\[
(EL)_{\alpha}^{\text{constraints def.}} = \frac{\partial L_c}{\partial r^\alpha} - \frac{d}{dt} \left(\frac{\partial L_c}{\partial r^{(1)\alpha}} \right) + \frac{d^2}{dt^2} \left(\frac{\partial L_c}{\partial r^{(2)\alpha}} \right) - \frac{d^3}{dt^3} \left(\frac{\partial L_c}{\partial r^{(3)\alpha}} \right) - \frac{1}{A_\alpha} \frac{\partial L_c}{\partial s^a}
\]

(1.12)

\[
B^b_{\alpha\beta} = \frac{1}{A_\alpha} - \frac{1}{A_\beta}
\]

(1.13a)

\[
B^b_{\alpha\beta\gamma} = \frac{3}{A_\alpha} - \frac{3}{A_\beta - A_\gamma}
\]

(1.13b)

\[
B^b_{\alpha\beta\gamma\delta} = \frac{3}{A_\alpha} - \frac{3}{A_\beta - A_\gamma - A_\delta}
\]

(1.13c)

Remark that the coefficients \(B \) does not depend of Lagrangian but only of constraints and in the following we give another expression. So, \(D = \text{span}\left\{ \frac{\delta}{\delta r^\alpha} \right\} \) where:

\[
\frac{\delta}{\delta r^\alpha} = \frac{\partial}{\partial r^\alpha} - A_\alpha \frac{\partial}{\partial s^a}
\]

(3.14)

and then:

\[
A^a_{\alpha\beta} = \frac{1}{\partial r^\beta} A_\alpha
\]

(3.15a)

\[
A^a_{\alpha\beta\gamma} = \frac{1}{\partial r^\gamma} A^a_{\alpha\beta} = \frac{1}{\partial r^\beta} A^a_{\alpha\gamma}
\]

(3.15b)

With respect to coefficients \(B \) it results:

\[
\left[\frac{\delta}{\delta r^\alpha}, \frac{\delta}{\delta r^\beta} \right] = b^b_{\alpha\beta} \frac{\partial}{\partial s^b}
\]

(3.16a)

\[
\tilde{B}^b_{\alpha\beta\gamma} = \left[\frac{\delta}{\delta r^\gamma}, \frac{\delta}{\delta r^\alpha} \right] A^b_{\beta}
\]

(3.16b)
\[B_{\alpha\beta\gamma\delta} = \left[\frac{\delta}{\delta x^\alpha}, \frac{\delta}{\delta x^\gamma} \right] A^b_{\beta\gamma} \]

and then: \[B_{\alpha\alpha} = B_{\alpha\beta\alpha} = B_{\alpha\beta\gamma\alpha} = 0 \] for every \(\alpha \).

2. An example

Let us recall that on \(M = \mathbb{R}^3 \) we have:

(i) the free particle is described by the Lagrangian of first order:
\[L (q^{(1)}) = \frac{1}{2} \sum_{i=1}^{3} (q^{(1)i})^2 \]

(ii) the elastic beam is described by the Lagrangian of second order([5])
\[L (q^{(2)}) = \frac{1}{2} \sum_{i=1}^{3} (q^{(2)i})^2. \]

Therefore, it seems naturally to consider the next Lagrangian of third order:
\[L (q^{(3)}) = \frac{1}{2} \sum_{i=1}^{3} (q^{(3)i})^2 \]

with the associated Euler-Lagrange equations:
\[(EL)_i^{\text{free}} = \frac{d^6 q^j}{dt^6} = 0, \quad 1 \leq i \leq 3. \]

Consider the nonholonomic constraint of Rosenberg-Bates-Sniatycki type ([1], [2, p. 84]):
\[z^{(1)} = x^{(1)} y \]
which gives:
\[z^{(2)} = x^{(2)} y + x^{(1)} y^{(1)} \] \hspace{1cm} (2.4a)
\[z^{(3)} = x^{(3)} y + 2x^{(2)} y + x^{(1)} y^{(2)} \] \hspace{1cm} (2.4b)
which means that \(p = 1, s^1 = z, r^1 = x, r^2 = y \) and:
\[A_{11} = \frac{1}{1}, \quad A_{12} = 0, \quad A_{21} = \frac{1}{2}, \quad A_{22} = \frac{1}{2} \] \hspace{1cm} (2.5a)
\[A_{11} = \frac{1}{2}, \quad A_{22} = \frac{1}{2}, \quad A_{21} = \frac{1}{2} \] \hspace{1cm} (2.5b)
\[A_{13} = 0. \] \hspace{1cm} (2.5c)
The constrained Lagrangian is:

\[L_c = \frac{1}{2} \left[(x^{(3)})^2 + (y^{(3)})^2 + (x^{(3)}y + 2x^{(2)}y^{(1)} + x^{(1)}y^{(2)})^2 \right] \] \hspace{1cm} (2.6)

and:

\[\frac{\partial L_c}{\partial y} = x^{(3)}z^{(3)} \hspace{1cm} (2.7a) \]

\[\frac{\partial L_c}{\partial x^{(1)}} = y^{(2)}z^{(3)} \hspace{1cm} (2.7b) \]

\[\frac{\partial L_c}{\partial x^{(2)}} = 2y^{(1)}z^{(3)} \hspace{1cm} (2.7c) \]

\[\frac{\partial L_c}{\partial x^{(3)}} = z^{(3)} + yz^{(3)} \hspace{1cm} (2.7d) \]

where \(z^{(3)} \) is given by (2.4b).

Therefore:

\[(EL)_{1\text{constraints}} = -\frac{d}{dt} \left(y^{(2)}z^{(3)} \right) + 2 \frac{d^2}{dt^2} \left(y^{(1)}z^{(3)} \right) - \frac{d^3}{dt^3} \left(x^{(3)} + yz^{(3)} \right) \] \hspace{1cm} (2.8a)

\[(EL)_{2\text{constraints}} = x^{(3)}z^{(3)} - 2 \frac{d}{dt} \left(x^{(2)}z^{(3)} \right) + \frac{d^2}{dt^2} \left(x^{(1)}z^{(3)} \right) - \frac{d^3}{dt^3} \left(y^{(3)} \right) \] \hspace{1cm} (2.8b)

which get:

\[(EL)_{1\text{constraints}} = -x^{(6)} - yz^{(6)} - y^{(1)}z^{(5)} + y^{(2)}z^{(4)} \] \hspace{1cm} (2.9a)

\[(EL)_{2\text{constraints}} = x^{(1)}z^{(5)} - y^{(6)}. \] \hspace{1cm} (2.9b)

From (2.5) the only nonzero \(B \) is \(B_{12} = -1 \) and then the right hand side of (1.11) is:

\[(EL)_{1\text{constraints}} = -y^{(1)}z^{(5)} \] \hspace{1cm} (2.10a)

\[(EL)_{2\text{constraints}} = x^{(1)}z^{(5)} \] \hspace{1cm} (2.10b)

and, in conclusion we have:

\[(EL)_{1\text{constraints}} : x^{(6)} + yz^{(6)} - y^{(2)}z^{(4)} = 0 \] \hspace{1cm} (2.11a)

\[(EL)_{2\text{constraints}} : y^{(6)} = 0. \] \hspace{1cm} (2.11b)
References

Faculty of Mathematics
University ”Al. I. Cuza”
Iași, 6600, Romania
E-mail: mcrasm@uaic.ro