Nonholonomic Lagrangians of second order:
Equations of motion for the constrained Lagrangian

Mircea Crâșmăreanu

Abstract

The equations of motion for the associated Lagrangian to a non-holonomic Lagrangian of second order are computed. An example is given.

Subject Classification: 70H25, 70H35, 58F05.
Key words and phrases: Lagrangian of second order, Euler-Lagrange equations, nonholonomic constraints, constrained Lagrangian.

Introduction

In the last years there is an increasing interest in nonholonomic mechanics especially from a geometrical point of view. Following the methodology of [2], where are treated nonholonomic Lagrangians of first order, we obtain the equations of motion in terms of the associated constrained Lagrangian of a nonholonomic Lagrangian involving accelerations. This type of Lagrangian is illustrated by the spinning particle.

This paper is dedicated to the memory of Romanian Academician Gheorghe Vrâncianu (1900-1979) who introduces in 1926 the notion of nonholonomic spaces, in order to give a geometrical approach to nonholonomic
mechanics ([8], [9]). Note that the Romanian school of mathematics has an important contribution of this subject ([3], [4], [7], [8], [9], [10]).

1 Equations of motion

The starting point is a configuration-space given by a \(n \)-dimensional manifold \(Q \), for which we consider the tangent bundle of order two \(T^2Q ([5], [6]) \). For coordinates \((q^i)_{1 \leq i \leq n} \) on \(Q \) we have the induced coordinates
\[
(q^i, \dot{q}^i = \frac{dq^i}{dt}, \ddot{q}^i = \frac{d^2q^i}{dt^2}) \text{ on } T^2Q.
\]
Let us suppose that the evolution of the considered system is described by the following objects:

1. a second-order Lagrangian, that is a smooth map \(L: T^2Q \to \mathbb{R} ([6]) \)
2. a set of \(p \) independent one-forms \((\omega^a(q))_{1 \leq a \leq p} \) whose vanishing gives the constraints of the system.

This 1-forms defines an \((n-p) \)-dimensional distribution \(D \) on \(Q \) i.e. \((\omega^a(q)) \) is a local basis of the annihilator \(D^0 \) of \(D \). Also, this constraints means that the only allowable velocities are the tangent vectors belonging to \(D \) or in other words the motion is constrained to the submanifold \(D \).

The Lagrangian \(L \) gives the Euler-Lagrange equations of order two ([5]):
\[
\delta L = (EL)_i^{\text{free}} \delta q^i = 0 \tag{1.1a}
\]
with:
\[
(EL)_i^{\text{free}} = \frac{\partial L}{\partial q^i} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}^i} \right) + \frac{d^2}{dt^2} \left(\frac{\partial L}{\partial \ddot{q}^i} \right) \tag{1.1b}
\]
and supposing that the constraints are nonholonomic, we can choose a local coordinate chart and a local basis for the constraints such that ([2, p. 31]):
\[
\omega^a(q) = ds^a + \Lambda^a_\alpha(r, s) \, dr^\alpha, \ 1 \leq a \leq p \tag{1.2}
\]
where \(q = (r, s) \in \mathbb{R}^{n-p} \times \mathbb{R}^p \).

From (1.2) it results that:
\[
\delta s^a + \Lambda^a_\alpha \delta r^\alpha = 0 \tag{1.3}
\]
which, by substitution into (1.1) yields:
\[
\frac{\partial L}{\partial r^\alpha} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{r}^\alpha} \right) + \frac{d^2}{dt^2} \left(\frac{\partial L}{\partial \ddot{r}^\alpha} \right) =
\]
\[A^a_\alpha \left[\frac{\partial L}{\partial s^a} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{s}^a} \right) + \frac{d^2}{dt^2} \left(\frac{\partial L}{\partial \ddot{s}^a} \right) \right] = 0. \] (1.4)

Equations (1.4) combined with the constraint equations:

\[s^a = - A^a_\alpha \dot{r}^\alpha \] (1.5a)
\[\ddot{s}^a = - \frac{d}{dt} \left(A^a_\alpha \dot{r}^\alpha - A^a_\alpha \ddot{r}^\alpha \right) \] (1.5b)

gives a complete description of the equations of motion. Remark that another form for (1.5b) is:

\[\ddot{s}^a = A^a_{\alpha \beta} \dot{r}^\alpha \dot{r}^\beta - A^a_\alpha \ddot{r}^\alpha \] (1.5b')

where:

\[A^a_{\alpha \beta}(r, s) = \frac{\partial A^a_\alpha}{\partial s^b \partial r^\beta} A^b_\beta - \frac{\partial A^a_\alpha}{\partial r^\beta}. \] (1.6)

Following [2, p. 31] we define an associated constrained Lagrangian \(L_c \) by substituting the constraints (1.5) into the Lagrangian \(L \):

\[L_c(r^\alpha, s^a, \dot{r}^\alpha, \ddot{r}^\alpha) \overset{def.}{=} L \left(r^\alpha, s^a, \dot{r}^\alpha, - A^a_\alpha \dot{r}^\alpha, \ddot{r}^\alpha, A^a_{\alpha \beta} \dot{r}^\alpha \dot{r}^\beta - A^a_\alpha \ddot{r}^\alpha \right). \] (1.7)

A direct coordinates calculation shows:

\[\frac{\partial L_c}{\partial \dot{r}^\alpha} = \frac{\partial L}{\partial \dot{r}^\alpha} - \frac{\partial L \partial A^b_\beta}{\partial s^b \partial \dot{r}^\alpha} \dot{r}^\beta + \frac{\partial L}{\partial \ddot{s}^a} \left(\frac{\partial A^b_\beta}{\partial r^\alpha} \dot{r}^\beta - \frac{\partial A^b_\beta}{\partial r^\alpha} \ddot{r}^\beta \right) \] (1.8a)
\[\frac{\partial L_c}{\partial s^a} = \frac{\partial L}{\partial s^a} - \frac{\partial L \partial A^b_\beta}{\partial s^b \partial \dot{r}^\alpha} \dot{r}^\beta + \frac{\partial L}{\partial \ddot{s}^a} \left(\frac{\partial A^b_\beta}{\partial s^a} \dot{r}^\beta - \frac{\partial A^b_\beta}{\partial s^a} \ddot{r}^\beta \right) \] (1.8b)
\[\frac{\partial L_c}{\partial \ddot{r}^\alpha} = \frac{\partial L}{\partial \ddot{r}^\alpha} - \frac{\partial L}{\partial \ddot{s}^a} A^b_\alpha + \frac{\partial L}{\partial \ddot{s}^a} \left(A^b_{\alpha \beta} + A^b_{\beta \alpha} \right) \dot{r}^\beta \] (1.8c)
\[\frac{\partial L_c}{\partial \dot{r}^\alpha} = \frac{\partial L}{\partial \dot{r}^\alpha} - \frac{\partial L}{\partial \ddot{s}^a} A^b_\alpha. \] (1.8d)
A long, but straightforward computation gives the equations of motion for \(L_c \):

\[
(EL)^{\text{constraints}}_\alpha = \left(\frac{\partial L}{\partial s^b} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{s}^b} \right) \right) 1^b_{\alpha \beta} \dot{r}^\beta + \frac{\partial L}{\partial \ddot{s}^b} 2^b_{\alpha \beta \gamma} \dot{r}^\beta \dot{r}^\gamma
\] (1.9a)

where:

\[
(EL)^{\text{constraints}}_\alpha = \frac{\partial L_c}{\partial r^\alpha} - \frac{d}{dt} \left(\frac{\partial L_c}{\partial \dot{r}^\alpha} \right) + \frac{d^2}{dt^2} \left(\frac{\partial L_c}{\partial \ddot{r}^\alpha} \right) - A^a_{\alpha} \frac{\partial L_c}{\partial s^a}
\] (1.9b)

\[
1^b_{\alpha \beta} = A^b_{\beta \alpha} - A^b_{\alpha \beta}
\] (1.10a)

\[
2^b_{\alpha \beta \gamma} = \frac{\partial A^b_{\beta \gamma}}{\partial r^\alpha} - \frac{\partial A^b_{\alpha \beta}}{\partial r^\gamma} + A^a_{\alpha} \frac{\partial A^b_{\beta \gamma}}{\partial s^a} - A^a_{\beta} \frac{\partial A^b_{\alpha \gamma}}{\partial s^a}. \] (1.10b)

Remark that the coefficients \(B \) does not depend of Lagrangian but only of constraints and \(1^b_{\alpha \alpha} = 2^b_{\alpha \beta \alpha} = 0 \) for every \(\alpha \).

2 Example: the nonholonomic spinning particle

According to [5] the Lagrangian of classical spinning particle is:

\[
L(q, \dot{q}, \ddot{q}) = \frac{1}{2} \sum_{i=1}^{3} (\dot{q}^i)^2 - \frac{1}{2} \sum_{i=1}^{3} (\ddot{q}^i)^2.
\] (2.1)

The Euler-Lagrange equations for the free Lagrangian (2.1) are:

\[
(EL)^{\text{free}}_i = \frac{d^2 q^i}{dt^2} + \frac{d^4 q^i}{dt^4} = 0, \quad 1 \leq i \leq 3.
\] (2.2)

Consider the nonholonomic constraint of Rosenberg-Bates-Sniatycki type([1], [2, p. 84]):

\[
\dot{z} = y \dot{x}
\] (2.3)

which gives:

\[
\ddot{z} = \ddot{y} \dot{x} + y \ddot{x}
\] (2.4a)
The constrained Lagrangian is:

\[L_c(y, \dot{x}, \dot{y}, \ddot{x}, \ddot{y}) = \frac{1}{2} (\dot{x}^2 + \dot{y}^2 + y^2 \dot{x}^2) - \frac{1}{2} [\ddot{x}^2 + \ddot{y}^2 + (\dot{x}\ddot{y} + y\dot{x})^2] \]

(2.5)

We have: \(p = 1, s^1 = z, r^1 = x, r^2 = y \), \(A_{12} = 1, A_{21} = 0 \) and:

\[\frac{\partial L_c}{\partial y} = y \dot{x}^2 - \ddot{x} \ddot{z} \]

(2.6a)

\[\frac{\partial L_c}{\partial \dot{x}} = \dot{x} + \dot{y}^2 - y \ddot{z}, \quad \frac{\partial L_c}{\partial \dot{y}} = \dot{y} - \dot{x} \ddot{z} \]

(2.6b)

\[\frac{\partial L_c}{\partial \ddot{x}} = -\dddot{x} - y \dddot{z}, \quad \frac{\partial L_c}{\partial \ddot{y}} = -\dddot{y} \]

(2.6c)

where \(\dddot{z} \) is given by (2.4a).

Therefore:

\[\frac{\partial L_c}{\partial x} - \frac{d}{dt} \left(\frac{\partial L_c}{\partial \dot{x}} \right) + \frac{d^2}{dt^2} \left(\frac{\partial L_c}{\partial \ddot{x}} \right) - A_1 \frac{\partial L_c}{\partial z} = 0 \]

\((EL)_{\text{constraints}}^1 = -\frac{d^4 x}{dt^4} - \frac{d^2 x}{dt^2} - \dddot{x} \dddot{y} - 2\dddot{y} \dddot{z} - \dddot{y} \frac{d^3 z}{dt^3} - y \frac{d^4 z}{dt^4} \)

(2.8a)

\((EL)_{\text{constraints}}^2 = -\frac{d^4 y}{dt^4} - \frac{d^2 y}{dt^2} + \dddot{x} \dddot{y} + \dddot{x} \frac{d^3 z}{dt^3} \)

(2.8b)

The right hand side of (1.9a) is:

\[(EL)_{\text{constraints}} = -\dddot{y} \left(\dddot{z} + \frac{d^3 z}{dt^3} \right) \]

(2.9a)
\[(EL)_{\text{constraints}}^2 = \dot{x} \left(\dot{z} + \frac{d^3 z}{dt^3} \right) \]

(2.9b)

and then the equations (1.9a - b) gives:

\[(EL)_{\text{constraints}}^1 : \frac{d^4 x}{dt^4} + \frac{d^2 x}{dt^2} + y^2 \frac{d^2 x}{dt^2} + \frac{dy}{dt} \frac{dz}{dt} + y \frac{d^4 z}{dt^4} = 0 \]

(2.10a)

\[(EL)_{\text{constraints}}^2 : \frac{d^4 y}{dt^4} + \frac{d^2 y}{dt^2} = 0. \]

(2.10b)

References

Faculty of Mathematics
University ”Al. I. Cuza”
Iași, 6600, Romania
E-mail: mcrasm@uaic.ro