


Books
 O. Cârjă, Elements of Nonlinear Functional Analysis, in Romanian, Editura Universitatii "Al.I. Cuza" Iasi, 1998.
 O. Cârjă, I.I. Vrabie, Differential equations on closed sets. Handbook of differential equations: ordinary differential
equations. Vol. II, Chap.3, 147238, Elsevier B. V., Amsterdam, 2005.
 G. Cârjă, O. Cârjă, Mathematical Analysis; Solved Problems, in Romanian, Gill, 2000.
 O.Cârjă, Unele Metode de Analiza Functionala Neliniara, Editura MATRIX ROM, Bucuresti, 2003, 200 p, ISBN 9736855287.
 O. Cârjă, M. Necula, I.I. Vrabie, Viability, Invariance and Applications, Elsevier, Amsterdam, 2007
 O. Cârjă, I.I. Vrabie (Editors) Applied Analysis and Differential Equations, World Scientific, 2007
 V. Barbu, O. Cârjă (Editors) "Alexandru Myller" Mathematical Seminar.
Proceedings of the Centennial Conference held in Iaşi, June 2126, 2010. AIP
Conference Proceedings, 1329. American Institute of Physics, Melville, NY, 2011. vi+300 pp.
Papers
 O. Cârjă, Local controllability of nonlinear evolution equations in Banach spaces, An. Sti. Univ."Al.I.Cuza" Iasi Sect. I a Mat., 25, (1979), 117  125.
Math.Rev.81m:47084 Zbl.416.93027
 O. Cârjă, A pseudotopological structure for with linear topological spaces, Rev. Roum. Math. Pures Appl., 25, (1980), 1311  1315.
Math.Rev.83j:46016 Zbl.492.46007
 O. Cârjă, Linear topological spaces with families of pseudonorms, An. Sti. Univ."Al.I.Cuza" Iasi Sect. I a Mat., 28, (1982), 5  10.
Math.Rev.83j:46016 Zbl.492.46004
 O. Cârjă, On the minimal time function for linear control systems, Itinerant Seminar on Functional Equations, Approximation and Convexity, Edited by Elena Popovici, Univ. ``Babes  Bolyai, ClujNapoca, 832, (1983), 25 28.
Math.Rev.85i:49013
 O. Cârjă, On variational perturbations in the minimum effort problem, in "Workshop on Differential Equations and Control Theory", Edited by V. Barbu, INCREST, Bucharest, (1983), 43  47.
 O. Cârjă, Variational perturbations in the minimum time problem, Proceedings of the Workshop in Differential Equations and their Control, Edited by V. Barbu and N.H. Pavel, Univ. ``Al.I.Cuza'', Iasi, (1983), 16 20.
 O. Cârjă, On the minimal time function for distributed control systems in Banach spaces, J. Optim. Theory Appl., 44, (1984), 397  405.
Math.Rev.86e:49015 Zbl.546.49016
 O. Cârjă, On variational perturbations of control problems: minimum time problem and minimum effort problem, J. Optim. Theory Appl., 44, (1984), 406  433.
Math.Rev.86h:49009 Zbl.546.49014
 O. Cârjă, The time optimal problem for boundarydistributed control systems, Boll. UMI, (6) 3B, (1984), 563  581.
Math.Rev.86d:49041 Zbl.558.49010
 O. Cârjă, On continuity of the minimal time function for distributed control systems, Boll. UMI, (6) 4A, (1985), 293  302.
Zbl.575.49004
 O. Cârjă, A note on admissible null controllability and on variational perturbations of the minimum time problem, An. Sti. Univ.``Al.I.Cuza'' Iasi Sect. I a Mat., 32, (1986), 14  19.
Math.Rev.88e:93064 Zbl.606.49004
 O. Cârjă, On constraint controllability of linear systems in Banach spaces, J. Optim. Theory Appl., 56, (1988), 215  225.
Math.Rev.89b:49057 Zbl.635.93009
 O. Cârjă, Range inclusion for convex processes on Banach spaces; applications in controllability, Proc. Amer. Math. Soc., 105, (1989), 185  191.
Math.Rev.90g:47004 Zbl.699.46004
 O. Cârjă, Constraint controllability for linear control systems, Annali di Mat. Pura Appl.,, (IV), CLVIII, (1991), 13  32.
Math.Rev.92m:93005 Zbl.749.93010
 O. Cârjă, The minimal time function for the heat equation with boundary control, Estimation and Control of Distributed Parameter Systems, Edited by F. Kappel and K. Kunisch, Birkhauser, Basel, ISNMseries, 100, (1991), 73  78.
Math.Rev.92m:93001 Zbl.748.49015
 O. Cârjă, The minimal time function for vibrating systems, Differential Equations and Control Theory, Edited by V. Barbu, Longman Scientific and Technical, 250, (1991), 58  62.
Math.Rev.93e.49037 Zbl.817.93032
 O. Cârjă, The minimal time function in infinite dimensions, SIAM J. Control Optim., 31, (1993), 1103  1114.
Math.Rev.94g:49070 Zbl.606.49004
 O. Cârjă, C. Ursescu, The characteristics method for lower semicontinuous functions, Conference on "Ordinary Differential Equations and their Applications", Firenze, Italy, (1993), 2223.
 O. Cârjă, C. Ursescu, The characteristics method for a first order partial differential equation, An. Sti. Univ."Al.I.Cuza" Iasi Sect. I a Mat.,39, (1993), 367  396.
Math.Rev.96h:35252 Zbl.744.35003 Zbl.842.34021
 O. Cârjă, C. Ursescu, Viscosity solutions and partial differential inequations, Evolution Equations, Control Theory and Biomathematics, Edited by P. Clement and G. Lumer, Marcel Dekker, New York, New York, (1994), 39  44.
Math.Rev.95a:49080 Zbl.845.35140
 O. Cârjă , C. Ursescu, Comparability and invariance for nonautonomous differential inclusions, in "Calitative Problems for Differential Equations and Control Theory", Edited by C. Corduneanu, World Scientific, (1995), 6370.
Math.Rev.97a:34036 Zbl.839.34019
 O. Cârjă, F. Mignanego, G. Pieri, Lower semicontinuous solutions of the Bellman equation for the minimum time problem, J. Optim. Theory Appl., 85, (1995), 563574.
Math.Rev.96b:49046 Zbl.826.49020
 O. Cârjă, Lower semicontinuous solutions for a class of Hamilton  Jacobi  Bellman equations, J. Optim. Theory Appl., 89, (1996), 637657.
Math.Rev.97f:49037 Zbl.848.49019
 O. Cârjă, Viability for differential inclusions in Banach spaces, Modelling and Optimization of Distributed Parameter Systems with Applications to Engineering", Edited by K. Malanowski, Z. Nahorski and M. Peszynska, Chapman & Hall, (1996), 265269.
Math.Rev.97e:34026 Zbl.881.35131
 O. Cârjă, I.I. Vrabie, Some new viability results for semilinear differential inclusions, NoDEA, 4, (1997), 401424.
Math. Rev.98h:34029 Zbl.876.34069
 O. Cârjă, Scorza Dragoni property and Lebesgue derivation theorem. An. Univ. Timisoara Ser. Mat.Inform. 36 (1998), no. 2, 199204.
Math. Rev.2003d:28004 Zbl.1012:34053
 O. Cârjă, I.I. Vrabie, Viability results for nonlinear perturbed differential inclusions, PanAmerican Mathematical Journal, 9, (1999), 6374.
Math. Rev.2000a:34023 Zbl.0960.34047
 O. Cârjă, M. Monteiro Marques, Viability for nonautonomous semilinear differential equations, J. Diff. Eqs., 166 (2000) 328346.
Math.Rev.2001i:49011 Zbl.966.34053
 Aze, D., Cârjă, O., Fast controls and minimum time, Control Cybernetics, 29 (2000) 887894.
Math.Rev.2002g:49033 Zbl.1004.93024
 O. Cârjă, Contingent solutions for the Bellman equation in infinite dimensions, J. Optim. Theory and Appl., 106 (2000), No. 1, 285297.
Math.Rev.2001e:49050 Zbl.1021.49022
 Cârjă, O., Marques, M., Viability results for nonautonomous differential inclusions, J. Convex Analysis, 7 (2000), 437443.
Math.Rev.2002b:49032 Zbl.0989.49007
 Cârjă, O., Vrabie, I.I., Viable Domains for Differential Equations Governed by Caratheodory Perturbations of Nonlinear Accretive Operators, Differential equations and control theory, (Athens, OH, 2000), 109130, Lecture Notes in Pure and Appl. Math., 225 (2000), Dekker, New York.
Math.Rev.2003d:34127 Zbl.
 Cârjă, O., Vrabie, I.I., Viability for semilinear differential inclusions via weak sequential tangency condition, J. Math. Anal. Appl., 262 (2001), 2438.
Math.Rev.2002f:34146 Zbl.1011.34051
 Cârjă, O., Marques, M., Weak tangency, weak invariance, and Caratheodory mappings, J. Dynam. Control Systems 8 (2002), no. 4, 445461.
Math.Rev.2003k:34033 Zbl.1025.34057
 Cârjă, O., Weakly decreasing systems in Hilbert spaces, An. Sti. Univ."Al.I.Cuza" Iasi Sect. I a Mat., 48 (2002), 397407.
Math.Rev.2004g:34014 Zbl.1065.34051
 Cârjă, O., Necula, M, Vrabie, I.I., Local invariance via comparison functions, Electron. J. Differential Equations, No. 50 (2004), 14 pp. (electronic).
Math.Rev.2005a:34067 Zbl.1058.34063
 Cannarsa, Piermarco; Cârjă, Ovidiu, On the Bellman equation for the minimum time problem in infinite dimensions. SIAM J. Control Optim. 43 (2004), no. 2, 532548
Math.Rev.2005a:34067 Zbl.1095.49023
 O. Cârjă, On the minimum time function and the minimum energy problem; a nonlinear case, Systems Control Lett. 55 (2006), no. 7, 543548.
Math.Rev.2007b:93018 Zbl.1129.49304
 G. Aniculaiesei, O. Cârjă, Discussion on:"A dual dynamic programming for multidimensional parabolic optimal control problems", Europeean J. Control, 12 (2006), 464465
 O. Cârjă, D. Motreanu, Flowinvariance and Lyapunov pairs, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 13B (2006), suppl., 185198.
Math.Rev.2007g:34116
 O. Cârjă, Weak tangency and weak derivatives in Banach spaces. An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 51 (2005), no. 2, 309318 (2006).
Math.Rev.2007c:34015 Zbl.
 O. Cârjă, On the minimum energy problem for a semilinear control system in Hilbert spaces, Mathematical Analysis and Applications, AIP Conference Proceedings, New York 2006, 3746.
Math.Rev.2007j:49028
 O. Cârjă, M. Necula, I.I. Vrabie, Invariance for singlevalued perturbed fully nonlinear evolutions, An. Univ. Timisoara Ser. Mat.Inform. 45 (2007), no. 1, 109116.
Math.Rev.2008i:34105
 O. Cârjă, M. Necula, I.I. Vrabie, Orthogonal solutions for a hyperbolic system, Buletinul Academiei de Stiinte a Republicii Moldova. Matematica, 1(56), 125130, 2008. Zbl 1160.35466, MR2392681
 O. Cârjă, M. Necula, I.I. Vrabie, Necessary and sufficient conditions for viability for nonlinear evolution inclusions, SetValued Analysis, 16 (2008), 701731. ISI Zbl 1179.34068, MR2465514
 O. Cârjă, M. Necula, I.I. Vrabie, Necessary and sufficient conditions for viability for semilinear differential inclusions, Trans. Amer. Math. Soc., 361 (2009), 343390. ISI Zbl 1172.34040, MR2439410
 O. Cârjă, D. Motreanu, Characterization of Lyapunov pairs in the nonlinear case and applications, Nonlinear Anal., 70 (2009), 352363. ISI Zbl 1172.34039, MR2468242
 O. Cârjă, A. Lazu, Lyapunov pairs for continuous perturbations of nonlinear evolutions, Nonlinear Analysis 71 (2009) 10121018. ISI Zbl 1173.37009, MR2527520
 O. Cârjă, M. Necula, I.I. Vrabie, Tangent sets, viability for differential inclusions and applications. Nonlinear Anal. 71 (2009), no. 12, ISI MR2671894
 O. Cârjă, A. Lazu, On the minimal time null controllability of the heat equation, Discrete Contin. Dyn. Syst. 2009, suppl., 143150. ISI Zbl 1184.93013, MR2641390
 O. Cârjă, A. Lazu, Regularity of the minimal time function for heat equation, An. Stiint. Univ. Al. I. Cuza Iasi, Ser. Noua Mat. 55, No.2 (2009) 355364. ISI Zbl pre05649814, MR2562253
 O. Cârjă, A. Lazu, Lyapunov pairs for semilinear evolutions, International Journal of Qualitative Theory of Differential Equations and Applications, Vol. 3, No.1 (2009) 6065.
 O. Cârjă, Lyapunov pairs for multivalued semilinear evolutions, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 73, No. 10, 33823389 (2010), ISI Zbl pre05800109
 O. Cârjă, V. Postolache, Necessary and sufficient conditions for local invariance for semilinear differential inclusions, SetValued Var. Anal. 19 (2011), no. 4, 537554. MR2836709; Zbl pre06013490
 O. Cârjă, V. Postolache, A priori estimates for solutions of differential inclusions, Discrete Contin. Dyn. Syst. 2011, Dynamical systems, differential equations and applications. 8th AIMS Conference. Suppl. Vol. I, 258264. ISBN: 9781601330079; 1601330073 MR2987406
 O. Cârjă, A. Lazu, Existence of global solutions to differential inclusions; apriori bounds, Math. Bohem. 137 (2012), no. 2, 195200. MR2978265
 O. Cârjă, A. Lazu, Lower semicontinuity of the solution set for semilinear differential inclusions, J. Math. Anal. Appl. 385 (2012), no. 2, 865873. MR2834859
 O. Cârjă, A. Lazu, Approximate weak invariance for differential inclusions in Banach spaces, Journal of Dynamical and Control Systems, 18 (2012), no. 2, 215227. MR2914416
 O. Cârjă, The minimum time function for semilinear evolutions, SIAM Journal on Control and Optimization, 2012, 50 (3), pp. 12651282. MR2968055
 O. Cârjă, A. Lazu, On the regularity of the solution map for differential inclusions, Dynamic Systems and Applications, 2012, 21 (23), pp. 457465. MR2918391
 O. Cârjă, T. Donchev, V. Postolache, Nonlinear Evolution Inclusions with Onesided Perron Righthand Side, Journal of Dynamical and Control Systems, 2013, 18 (3), pp. 439456. MR3085700
 O. Cârjă, A. Lazu, How mild can slow controls be?, Mathematics of Control, Signals, and Systems 26 (2014), pp. 547562.
 O. Cârjă, A. Lazu, Estimates of slow controls, European Scientific Journal, 2014, May 2014/Special Edition, pp. 172176.
 O. Cârjă, T. Donchev, V. Postolache, Relaxation results for nonlinear evolution inclusions with onesided Perron righthand side, SetValued Var. Anal. 22 (4), 2014, pp. 657671.
 O. Cârjă, T. Donchev, M. Rafaqat, R. Ahmed, Viability of fractional differential inclusions, Applied Mathematics Letters, 2014, 38, pp. 4851.
 O. Cârjă, A. Lazu, On the continuity of the state constrained minimal time function, Electronic Journal of Qualitative Theory of Differential Equations, 2014, No. 48, pp. 116.
 O. Cârjă, A. Miranville, C. Morosanu, On the existence, uniqueness and regularity of solutions to the phasefield system with a general regular potential and a general class of nonlinear and nonhomogeneous boundary
conditions, Nonlinear Analysis: Theory, Methods & Applications, 2015, 113, pp. 190208.
 O. Cârjă, T. Donchev, A. I. Lazu, Generalized solutions of semilinear evolution inclusions, SIAM J. Optim. 26 (2), pp. 13651378, 2016.
 O. Benniche, O. Cârjă, Approximate and near weak invariance for nonautonomous differential inclusions, J Dyn Control Syst, 2016, doi:10.1007/s1088301693120.
 O. Benniche, O. Cârjă, Viability for quasiautonomous semilinear evolution inclusions, Mediterranean Journal of Mathematics, 2016, doi:10.1007/s000090160739z.
