|
|
|
Books
- O. Cârjă, Elements of Nonlinear Functional Analysis, in Romanian, Editura Universitatii "Al.I. Cuza" Iasi, 1998.
- O. Cârjă, I.I. Vrabie, Differential equations on closed sets. Handbook of differential equations: ordinary differential
equations. Vol. II, Chap.3, 147--238, Elsevier B. V., Amsterdam, 2005.
- G. Cârjă, O. Cârjă, Mathematical Analysis; Solved Problems, in Romanian, Gill, 2000.
- O.Cârjă, Unele Metode de Analiza Functionala Neliniara, Editura MATRIX ROM, Bucuresti, 2003, 200 p, ISBN 973-685-528-7.
- O. Cârjă, M. Necula, I.I. Vrabie, Viability, Invariance and Applications, Elsevier, Amsterdam, 2007
- O. Cârjă, I.I. Vrabie (Editors) Applied Analysis and Differential Equations, World Scientific, 2007
- V. Barbu, O. Cârjă (Editors) "Alexandru Myller" Mathematical Seminar.
Proceedings of the Centennial Conference held in Iaşi, June 21-26, 2010. AIP
Conference Proceedings, 1329. American Institute of Physics, Melville, NY, 2011. vi+300 pp.
Papers
- O. Cârjă, Local controllability of nonlinear evolution equations in Banach spaces, An. Sti. Univ."Al.I.Cuza" Iasi Sect. I a Mat., 25, (1979), 117 - 125.
Math.Rev.81m:47084 Zbl.416.93027
- O. Cârjă, A pseudotopological structure for with linear topological spaces, Rev. Roum. Math. Pures Appl., 25, (1980), 1311 - 1315.
Math.Rev.83j:46016 Zbl.492.46007
- O. Cârjă, Linear topological spaces with families of pseudonorms, An. Sti. Univ."Al.I.Cuza" Iasi Sect. I a Mat., 28, (1982), 5 - 10.
Math.Rev.83j:46016 Zbl.492.46004
- O. Cârjă, On the minimal time function for linear control systems, Itinerant Seminar on Functional Equations, Approximation and Convexity, Edited by Elena Popovici, Univ. ``Babes - Bolyai, Cluj-Napoca, 83-2, (1983), 25 -28.
Math.Rev.85i:49013
- O. Cârjă, On variational perturbations in the minimum effort problem, in "Workshop on Differential Equations and Control Theory", Edited by V. Barbu, INCREST, Bucharest, (1983), 43 - 47.
- O. Cârjă, Variational perturbations in the minimum time problem, Proceedings of the Workshop in Differential Equations and their Control, Edited by V. Barbu and N.H. Pavel, Univ. ``Al.I.Cuza'', Iasi, (1983), 16 -20.
- O. Cârjă, On the minimal time function for distributed control systems in Banach spaces, J. Optim. Theory Appl., 44, (1984), 397 - 405.
Math.Rev.86e:49015 Zbl.546.49016
- O. Cârjă, On variational perturbations of control problems: minimum time problem and minimum effort problem, J. Optim. Theory Appl., 44, (1984), 406 - 433.
Math.Rev.86h:49009 Zbl.546.49014
- O. Cârjă, The time optimal problem for boundary-distributed control systems, Boll. UMI, (6) 3-B, (1984), 563 - 581.
Math.Rev.86d:49041 Zbl.558.49010
- O. Cârjă, On continuity of the minimal time function for distributed control systems, Boll. UMI, (6) 4-A, (1985), 293 - 302.
Zbl.575.49004
- O. Cârjă, A note on admissible null controllability and on variational perturbations of the minimum time problem, An. Sti. Univ.``Al.I.Cuza'' Iasi Sect. I a Mat., 32, (1986), 14 - 19.
Math.Rev.88e:93064 Zbl.606.49004
- O. Cârjă, On constraint controllability of linear systems in Banach spaces, J. Optim. Theory Appl., 56, (1988), 215 - 225.
Math.Rev.89b:49057 Zbl.635.93009
- O. Cârjă, Range inclusion for convex processes on Banach spaces; applications in controllability, Proc. Amer. Math. Soc., 105, (1989), 185 - 191.
Math.Rev.90g:47004 Zbl.699.46004
- O. Cârjă, Constraint controllability for linear control systems, Annali di Mat. Pura Appl.,, (IV), CLVIII, (1991), 13 - 32.
Math.Rev.92m:93005 Zbl.749.93010
- O. Cârjă, The minimal time function for the heat equation with boundary control, Estimation and Control of Distributed Parameter Systems, Edited by F. Kappel and K. Kunisch, Birkhauser, Basel, ISNM-series, 100, (1991), 73 - 78.
Math.Rev.92m:93001 Zbl.748.49015
- O. Cârjă, The minimal time function for vibrating systems, Differential Equations and Control Theory, Edited by V. Barbu, Longman Scientific and Technical, 250, (1991), 58 - 62.
Math.Rev.93e.49037 Zbl.817.93032
- O. Cârjă, The minimal time function in infinite dimensions, SIAM J. Control Optim., 31, (1993), 1103 - 1114.
Math.Rev.94g:49070 Zbl.606.49004
- O. Cârjă, C. Ursescu, The characteristics method for lower semicontinuous functions, Conference on "Ordinary Differential Equations and their Applications", Firenze, Italy, (1993), 22-23.
- O. Cârjă, C. Ursescu, The characteristics method for a first order partial differential equation, An. Sti. Univ."Al.I.Cuza" Iasi Sect. I a Mat.,39, (1993), 367 - 396.
Math.Rev.96h:35252 Zbl.744.35003 Zbl.842.34021
- O. Cârjă, C. Ursescu, Viscosity solutions and partial differential inequations, Evolution Equations, Control Theory and Biomathematics, Edited by P. Clement and G. Lumer, Marcel Dekker, New York, New York, (1994), 39 - 44.
Math.Rev.95a:49080 Zbl.845.35140
- O. Cârjă , C. Ursescu, Comparability and invariance for nonautonomous differential inclusions, in "Calitative Problems for Differential Equations and Control Theory", Edited by C. Corduneanu, World Scientific, (1995), 63-70.
Math.Rev.97a:34036 Zbl.839.34019
- O. Cârjă, F. Mignanego, G. Pieri, Lower semicontinuous solutions of the Bellman equation for the minimum time problem, J. Optim. Theory Appl., 85, (1995), 563--574.
Math.Rev.96b:49046 Zbl.826.49020
- O. Cârjă, Lower semicontinuous solutions for a class of Hamilton - Jacobi - Bellman equations, J. Optim. Theory Appl., 89, (1996), 637-657.
Math.Rev.97f:49037 Zbl.848.49019
- O. Cârjă, Viability for differential inclusions in Banach spaces, Modelling and Optimization of Distributed Parameter Systems with Applications to Engineering", Edited by K. Malanowski, Z. Nahorski and M. Peszynska, Chapman & Hall, (1996), 265-269.
Math.Rev.97e:34026 Zbl.881.35131
- O. Cârjă, I.I. Vrabie, Some new viability results for semilinear differential inclusions, NoDEA, 4, (1997), 401-424.
Math. Rev.98h:34029 Zbl.876.34069
- O. Cârjă, Scorza Dragoni property and Lebesgue derivation theorem. An. Univ. Timisoara Ser. Mat.-Inform. 36 (1998), no. 2, 199--204.
Math. Rev.2003d:28004 Zbl.1012:34053
- O. Cârjă, I.I. Vrabie, Viability results for nonlinear perturbed differential inclusions, PanAmerican Mathematical Journal, 9, (1999), 63-74.
Math. Rev.2000a:34023 Zbl.0960.34047
- O. Cârjă, M. Monteiro Marques, Viability for nonautonomous semilinear differential equations, J. Diff. Eqs., 166 (2000) 328-346.
Math.Rev.2001i:49011 Zbl.966.34053
- Aze, D., Cârjă, O., Fast controls and minimum time, Control Cybernetics, 29 (2000) 887-894.
Math.Rev.2002g:49033 Zbl.1004.93024
- O. Cârjă, Contingent solutions for the Bellman equation in infinite dimensions, J. Optim. Theory and Appl., 106 (2000), No. 1, 285-297.
Math.Rev.2001e:49050 Zbl.1021.49022
- Cârjă, O., Marques, M., Viability results for nonautonomous differential inclusions, J. Convex Analysis, 7 (2000), 437-443.
Math.Rev.2002b:49032 Zbl.0989.49007
- Cârjă, O., Vrabie, I.I., Viable Domains for Differential Equations Governed by Caratheodory Perturbations of Nonlinear -Accretive Operators, Differential equations and control theory, (Athens, OH, 2000), 109--130, Lecture Notes in Pure and Appl. Math., 225 (2000), Dekker, New York.
Math.Rev.2003d:34127 Zbl.
- Cârjă, O., Vrabie, I.I., Viability for semilinear differential inclusions via weak sequential tangency condition, J. Math. Anal. Appl., 262 (2001), 24--38.
Math.Rev.2002f:34146 Zbl.1011.34051
- Cârjă, O., Marques, M., Weak tangency, weak invariance, and Caratheodory mappings, J. Dynam. Control Systems 8 (2002), no. 4, 445--461.
Math.Rev.2003k:34033 Zbl.1025.34057
- Cârjă, O., Weakly decreasing systems in Hilbert spaces, An. Sti. Univ."Al.I.Cuza" Iasi Sect. I a Mat., 48 (2002), 397-407.
Math.Rev.2004g:34014 Zbl.1065.34051
- Cârjă, O., Necula, M, Vrabie, I.I., Local invariance via comparison functions, Electron. J. Differential Equations, No. 50 (2004), 14 pp. (electronic).
Math.Rev.2005a:34067 Zbl.1058.34063
- Cannarsa, Piermarco; Cârjă, Ovidiu, On the Bellman equation for the minimum time problem in infinite dimensions. SIAM J. Control Optim. 43 (2004), no. 2, 532--548
Math.Rev.2005a:34067 Zbl.1095.49023
- O. Cârjă, On the minimum time function and the minimum energy problem; a nonlinear case, Systems Control Lett. 55 (2006), no. 7, 543--548.
Math.Rev.2007b:93018 Zbl.1129.49304
- G. Aniculaiesei, O. Cârjă, Discussion on:"A dual dynamic programming for multidimensional parabolic optimal control problems", Europeean J. Control, 12 (2006), 464-465
- O. Cârjă, D. Motreanu, Flow-invariance and Lyapunov pairs, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 13B (2006), suppl., 185--198.
Math.Rev.2007g:34116
- O. Cârjă, Weak tangency and weak derivatives in Banach spaces. An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 51 (2005), no. 2, 309--318 (2006).
Math.Rev.2007c:34015 Zbl.
- O. Cârjă, On the minimum energy problem for a semilinear control system in Hilbert spaces, Mathematical Analysis and Applications, AIP Conference Proceedings, New York 2006, 37-46.
Math.Rev.2007j:49028
- O. Cârjă, M. Necula, I.I. Vrabie, Invariance for single-valued perturbed fully nonlinear evolutions, An. Univ. Timisoara Ser. Mat.-Inform. 45 (2007), no. 1, 109--116.
Math.Rev.2008i:34105
- O. Cârjă, M. Necula, I.I. Vrabie, Orthogonal solutions for a hyperbolic system, Buletinul Academiei de Stiinte a Republicii Moldova. Matematica, 1(56), 125--130, 2008. Zbl 1160.35466, MR2392681
- O. Cârjă, M. Necula, I.I. Vrabie, Necessary and sufficient conditions for viability for nonlinear evolution inclusions, Set-Valued Analysis, 16 (2008), 701-731. ISI Zbl 1179.34068, MR2465514
- O. Cârjă, M. Necula, I.I. Vrabie, Necessary and sufficient conditions for viability for semilinear differential inclusions, Trans. Amer. Math. Soc., 361 (2009), 343-390. ISI Zbl 1172.34040, MR2439410
- O. Cârjă, D. Motreanu, Characterization of Lyapunov pairs in the nonlinear case and applications, Nonlinear Anal., 70 (2009), 352-363. ISI Zbl 1172.34039, MR2468242
- O. Cârjă, A. Lazu, Lyapunov pairs for continuous perturbations of nonlinear evolutions, Nonlinear Analysis 71 (2009) 1012-1018. ISI Zbl 1173.37009, MR2527520
- O. Cârjă, M. Necula, I.I. Vrabie, Tangent sets, viability for differential inclusions and applications. Nonlinear Anal. 71 (2009), no. 12, ISI MR2671894
- O. Cârjă, A. Lazu, On the minimal time null controllability of the heat equation, Discrete Contin. Dyn. Syst. 2009, suppl., 143-150. ISI Zbl 1184.93013, MR2641390
- O. Cârjă, A. Lazu, Regularity of the minimal time function for heat equation, An. Stiint. Univ. Al. I. Cuza Iasi, Ser. Noua Mat. 55, No.2 (2009) 355-364. ISI Zbl pre05649814, MR2562253
- O. Cârjă, A. Lazu, Lyapunov pairs for semilinear evolutions, International Journal of Qualitative Theory of Differential Equations and Applications, Vol. 3, No.1 (2009) 60-65.
- O. Cârjă, Lyapunov pairs for multi-valued semi-linear evolutions, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 73, No. 10, 3382-3389 (2010), ISI Zbl pre05800109
- O. Cârjă, V. Postolache, Necessary and sufficient conditions for local invariance for semilinear differential inclusions, Set-Valued Var. Anal. 19 (2011), no. 4, 537-554. MR2836709; Zbl pre06013490
- O. Cârjă, V. Postolache, A priori estimates for solutions of differential inclusions, Discrete Contin. Dyn. Syst. 2011, Dynamical systems, differential equations and applications. 8th AIMS Conference. Suppl. Vol. I, 258-264. ISBN: 978-1-60133-007-9; 1-60133-007-3 MR2987406
- O. Cârjă, A. Lazu, Existence of global solutions to differential inclusions; apriori bounds, Math. Bohem. 137 (2012), no. 2, 195-200. MR2978265
- O. Cârjă, A. Lazu, Lower semi-continuity of the solution set for semilinear differential inclusions, J. Math. Anal. Appl. 385 (2012), no. 2, 865-873. MR2834859
- O. Cârjă, A. Lazu, Approximate weak invariance for differential inclusions in Banach spaces, Journal of Dynamical and Control Systems, 18 (2012), no. 2, 215-227. MR2914416
- O. Cârjă, The minimum time function for semilinear evolutions, SIAM Journal on Control and Optimization, 2012, 50 (3), pp. 1265-1282. MR2968055
- O. Cârjă, A. Lazu, On the regularity of the solution map for differential inclusions, Dynamic Systems and Applications, 2012, 21 (2-3), pp. 457-465. MR2918391
- O. Cârjă, T. Donchev, V. Postolache, Nonlinear Evolution Inclusions with One-sided Perron Right-hand Side, Journal of Dynamical and Control Systems, 2013, 18 (3), pp. 439-456. MR3085700
- O. Cârjă, A. Lazu, How mild can slow controls be?, Mathematics of Control, Signals, and Systems 26 (2014), pp. 547-562.
- O. Cârjă, A. Lazu, Estimates of slow controls, European Scientific Journal, 2014, May 2014/Special Edition, pp. 172-176.
- O. Cârjă, T. Donchev, V. Postolache, Relaxation results for nonlinear evolution inclusions with one-sided Perron right-hand side, Set-Valued Var. Anal. 22 (4), 2014, pp. 657-671.
- O. Cârjă, T. Donchev, M. Rafaqat, R. Ahmed, Viability of fractional differential inclusions, Applied Mathematics Letters, 2014, 38, pp. 48-51.
- O. Cârjă, A. Lazu, On the continuity of the state constrained minimal time function, Electronic Journal of Qualitative Theory of Differential Equations, 2014, No. 48, pp. 1-16.
- O. Cârjă, A. Miranville, C. Morosanu, On the existence, uniqueness and regularity of solutions to the phase-field system with a general regular potential and a general class of nonlinear and non-homogeneous boundary
conditions, Nonlinear Analysis: Theory, Methods & Applications, 2015, 113, pp. 190-208.
- O. Cârjă, T. Donchev, A. I. Lazu, Generalized solutions of semilinear evolution inclusions, SIAM J. Optim. 26 (2), pp. 1365-1378, 2016.
- O. Benniche, O. Cârjă, Approximate and near weak invariance for nonautonomous differential inclusions, J Dyn Control Syst, 2016, doi:10.1007/s10883-016-9312-0.
- O. Benniche, O. Cârjă, Viability for quasi-autonomous semilinear evolution inclusions, Mediterranean Journal of Mathematics, 2016, doi:10.1007/s00009-016-0739-z.
|