Menu   Prof. dr. Ovidiu Cârjă


    Curriculum Vitae
    Research
    Teaching

Contact

    ocarja@uaic.ro
    +40 0232 201 231
    +40 0232 201 160

Home

  www.math.uaic.ro  www.math.uaic.ro
  

Books

  1. O. Cârjă, Elements of Nonlinear Functional Analysis, in Romanian, Editura Universitatii "Al.I. Cuza" Iasi, 1998.
  2. O. Cârjă, I.I. Vrabie, Differential equations on closed sets. Handbook of differential equations: ordinary differential equations. Vol. II, Chap.3, 147--238, Elsevier B. V., Amsterdam, 2005.
  3. G. Cârjă, O. Cârjă, Mathematical Analysis; Solved Problems, in Romanian, Gill, 2000.
  4. O.Cârjă, Unele Metode de Analiza Functionala Neliniara, Editura MATRIX ROM, Bucuresti, 2003, 200 p, ISBN 973-685-528-7.
  5. O. Cârjă, M. Necula, I.I. Vrabie, Viability, Invariance and Applications, Elsevier, Amsterdam, 2007
  6. O. Cârjă, I.I. Vrabie (Editors) Applied Analysis and Differential Equations, World Scientific, 2007
  7. V. Barbu, O. Cârjă (Editors) "Alexandru Myller" Mathematical Seminar. Proceedings of the Centennial Conference held in Iaşi, June 21-26, 2010. AIP Conference Proceedings, 1329. American Institute of Physics, Melville, NY, 2011. vi+300 pp.

Papers

  1. O. Cârjă, Local controllability of nonlinear evolution equations in Banach spaces, An. Sti. Univ."Al.I.Cuza" Iasi Sect. I a Mat., 25, (1979), 117 - 125. Math.Rev.81m:47084 Zbl.416.93027
  2. O. Cârjă, A pseudotopological structure for with linear topological spaces, Rev. Roum. Math. Pures Appl., 25, (1980), 1311 - 1315. Math.Rev.83j:46016 Zbl.492.46007
  3. O. Cârjă, Linear topological spaces with families of pseudonorms, An. Sti. Univ."Al.I.Cuza" Iasi Sect. I a Mat., 28, (1982), 5 - 10. Math.Rev.83j:46016 Zbl.492.46004
  4. O. Cârjă, On the minimal time function for linear control systems, Itinerant Seminar on Functional Equations, Approximation and Convexity, Edited by Elena Popovici, Univ. ``Babes - Bolyai, Cluj-Napoca, 83-2, (1983), 25 -28. Math.Rev.85i:49013
  5. O. Cârjă, On variational perturbations in the minimum effort problem, in "Workshop on Differential Equations and Control Theory", Edited by V. Barbu, INCREST, Bucharest, (1983), 43 - 47.
  6. O. Cârjă, Variational perturbations in the minimum time problem, Proceedings of the Workshop in Differential Equations and their Control, Edited by V. Barbu and N.H. Pavel, Univ. ``Al.I.Cuza'', Iasi, (1983), 16 -20.
  7. O. Cârjă, On the minimal time function for distributed control systems in Banach spaces, J. Optim. Theory Appl., 44, (1984), 397 - 405. Math.Rev.86e:49015 Zbl.546.49016
  8. O. Cârjă, On variational perturbations of control problems: minimum time problem and minimum effort problem, J. Optim. Theory Appl., 44, (1984), 406 - 433. Math.Rev.86h:49009 Zbl.546.49014
  9. O. Cârjă, The time optimal problem for boundary-distributed control systems, Boll. UMI, (6) 3-B, (1984), 563 - 581. Math.Rev.86d:49041 Zbl.558.49010
  10. O. Cârjă, On continuity of the minimal time function for distributed control systems, Boll. UMI, (6) 4-A, (1985), 293 - 302. Zbl.575.49004
  11. O. Cârjă, A note on admissible null controllability and on variational perturbations of the minimum time problem, An. Sti. Univ.``Al.I.Cuza'' Iasi Sect. I a Mat., 32, (1986), 14 - 19. Math.Rev.88e:93064 Zbl.606.49004
  12. O. Cârjă, On constraint controllability of linear systems in Banach spaces, J. Optim. Theory Appl., 56, (1988), 215 - 225. Math.Rev.89b:49057 Zbl.635.93009
  13. O. Cârjă, Range inclusion for convex processes on Banach spaces; applications in controllability, Proc. Amer. Math. Soc., 105, (1989), 185 - 191. Math.Rev.90g:47004 Zbl.699.46004
  14. O. Cârjă, Constraint controllability for linear control systems, Annali di Mat. Pura Appl.,, (IV), CLVIII, (1991), 13 - 32. Math.Rev.92m:93005 Zbl.749.93010
  15. O. Cârjă, The minimal time function for the heat equation with boundary control, Estimation and Control of Distributed Parameter Systems, Edited by F. Kappel and K. Kunisch, Birkhauser, Basel, ISNM-series, 100, (1991), 73 - 78. Math.Rev.92m:93001 Zbl.748.49015
  16. O. Cârjă, The minimal time function for vibrating systems, Differential Equations and Control Theory, Edited by V. Barbu, Longman Scientific and Technical, 250, (1991), 58 - 62. Math.Rev.93e.49037 Zbl.817.93032
  17. O. Cârjă, The minimal time function in infinite dimensions, SIAM J. Control Optim., 31, (1993), 1103 - 1114. Math.Rev.94g:49070 Zbl.606.49004
  18. O. Cârjă, C. Ursescu, The characteristics method for lower semicontinuous functions, Conference on "Ordinary Differential Equations and their Applications", Firenze, Italy, (1993), 22-23.
  19. O. Cârjă, C. Ursescu, The characteristics method for a first order partial differential equation, An. Sti. Univ."Al.I.Cuza" Iasi Sect. I a Mat.,39, (1993), 367 - 396. Math.Rev.96h:35252 Zbl.744.35003 Zbl.842.34021
  20. O. Cârjă, C. Ursescu, Viscosity solutions and partial differential inequations, Evolution Equations, Control Theory and Biomathematics, Edited by P. Clement and G. Lumer, Marcel Dekker, New York, New York, (1994), 39 - 44. Math.Rev.95a:49080 Zbl.845.35140
  21. O. Cârjă , C. Ursescu, Comparability and invariance for nonautonomous differential inclusions, in "Calitative Problems for Differential Equations and Control Theory", Edited by C. Corduneanu, World Scientific, (1995), 63-70. Math.Rev.97a:34036 Zbl.839.34019
  22. O. Cârjă, F. Mignanego, G. Pieri, Lower semicontinuous solutions of the Bellman equation for the minimum time problem, J. Optim. Theory Appl., 85, (1995), 563--574. Math.Rev.96b:49046 Zbl.826.49020
  23. O. Cârjă, Lower semicontinuous solutions for a class of Hamilton - Jacobi - Bellman equations, J. Optim. Theory Appl., 89, (1996), 637-657. Math.Rev.97f:49037 Zbl.848.49019
  24. O. Cârjă, Viability for differential inclusions in Banach spaces, Modelling and Optimization of Distributed Parameter Systems with Applications to Engineering", Edited by K. Malanowski, Z. Nahorski and M. Peszynska, Chapman & Hall, (1996), 265-269. Math.Rev.97e:34026 Zbl.881.35131
  25. O. Cârjă, I.I. Vrabie, Some new viability results for semilinear differential inclusions, NoDEA, 4, (1997), 401-424. Math. Rev.98h:34029 Zbl.876.34069
  26. O. Cârjă, Scorza Dragoni property and Lebesgue derivation theorem. An. Univ. Timisoara Ser. Mat.-Inform. 36 (1998), no. 2, 199--204. Math. Rev.2003d:28004 Zbl.1012:34053
  27. O. Cârjă, I.I. Vrabie, Viability results for nonlinear perturbed differential inclusions, PanAmerican Mathematical Journal, 9, (1999), 63-74. Math. Rev.2000a:34023 Zbl.0960.34047
  28. O. Cârjă, M. Monteiro Marques, Viability for nonautonomous semilinear differential equations, J. Diff. Eqs., 166 (2000) 328-346. Math.Rev.2001i:49011 Zbl.966.34053
  29. Aze, D., Cârjă, O., Fast controls and minimum time, Control Cybernetics, 29 (2000) 887-894. Math.Rev.2002g:49033 Zbl.1004.93024
  30. O. Cârjă, Contingent solutions for the Bellman equation in infinite dimensions, J. Optim. Theory and Appl., 106 (2000), No. 1, 285-297. Math.Rev.2001e:49050 Zbl.1021.49022
  31. Cârjă, O., Marques, M., Viability results for nonautonomous differential inclusions, J. Convex Analysis, 7 (2000), 437-443. Math.Rev.2002b:49032 Zbl.0989.49007
  32. Cârjă, O., Vrabie, I.I., Viable Domains for Differential Equations Governed by Caratheodory Perturbations of Nonlinear -Accretive Operators, Differential equations and control theory, (Athens, OH, 2000), 109--130, Lecture Notes in Pure and Appl. Math., 225 (2000), Dekker, New York. Math.Rev.2003d:34127 Zbl.
  33. Cârjă, O., Vrabie, I.I., Viability for semilinear differential inclusions via weak sequential tangency condition, J. Math. Anal. Appl., 262 (2001), 24--38. Math.Rev.2002f:34146 Zbl.1011.34051
  34. Cârjă, O., Marques, M., Weak tangency, weak invariance, and Caratheodory mappings, J. Dynam. Control Systems 8 (2002), no. 4, 445--461. Math.Rev.2003k:34033 Zbl.1025.34057
  35. Cârjă, O., Weakly decreasing systems in Hilbert spaces, An. Sti. Univ."Al.I.Cuza" Iasi Sect. I a Mat., 48 (2002), 397-407. Math.Rev.2004g:34014 Zbl.1065.34051
  36. Cârjă, O., Necula, M, Vrabie, I.I., Local invariance via comparison functions, Electron. J. Differential Equations, No. 50 (2004), 14 pp. (electronic). Math.Rev.2005a:34067 Zbl.1058.34063
  37. Cannarsa, Piermarco; Cârjă, Ovidiu, On the Bellman equation for the minimum time problem in infinite dimensions. SIAM J. Control Optim. 43 (2004), no. 2, 532--548 Math.Rev.2005a:34067 Zbl.1095.49023
  38. O. Cârjă, On the minimum time function and the minimum energy problem; a nonlinear case, Systems Control Lett. 55 (2006), no. 7, 543--548. Math.Rev.2007b:93018 Zbl.1129.49304
  39. G. Aniculaiesei, O. Cârjă, Discussion on:"A dual dynamic programming for multidimensional parabolic optimal control problems", Europeean J. Control, 12 (2006), 464-465
  40. O. Cârjă, D. Motreanu, Flow-invariance and Lyapunov pairs, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 13B (2006), suppl., 185--198. Math.Rev.2007g:34116
  41. O. Cârjă, Weak tangency and weak derivatives in Banach spaces. An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 51 (2005), no. 2, 309--318 (2006). Math.Rev.2007c:34015 Zbl.
  42. O. Cârjă, On the minimum energy problem for a semilinear control system in Hilbert spaces, Mathematical Analysis and Applications, AIP Conference Proceedings, New York 2006, 37-46. Math.Rev.2007j:49028
  43. O. Cârjă, M. Necula, I.I. Vrabie, Invariance for single-valued perturbed fully nonlinear evolutions, An. Univ. Timisoara Ser. Mat.-Inform. 45 (2007), no. 1, 109--116. Math.Rev.2008i:34105
  44. O. Cârjă, M. Necula, I.I. Vrabie, Orthogonal solutions for a hyperbolic system, Buletinul Academiei de Stiinte a Republicii Moldova. Matematica, 1(56), 125--130, 2008. Zbl 1160.35466, MR2392681
  45. O. Cârjă, M. Necula, I.I. Vrabie, Necessary and sufficient conditions for viability for nonlinear evolution inclusions, Set-Valued Analysis, 16 (2008), 701-731. ISI Zbl 1179.34068, MR2465514
  46. O. Cârjă, M. Necula, I.I. Vrabie, Necessary and sufficient conditions for viability for semilinear differential inclusions, Trans. Amer. Math. Soc., 361 (2009), 343-390. ISI Zbl 1172.34040, MR2439410
  47. O. Cârjă, D. Motreanu, Characterization of Lyapunov pairs in the nonlinear case and applications, Nonlinear Anal., 70 (2009), 352-363. ISI Zbl 1172.34039, MR2468242
  48. O. Cârjă, A. Lazu, Lyapunov pairs for continuous perturbations of nonlinear evolutions, Nonlinear Analysis 71 (2009) 1012-1018. ISI Zbl 1173.37009, MR2527520
  49. O. Cârjă, M. Necula, I.I. Vrabie, Tangent sets, viability for differential inclusions and applications. Nonlinear Anal. 71 (2009), no. 12, ISI MR2671894
  50. O. Cârjă, A. Lazu, On the minimal time null controllability of the heat equation, Discrete Contin. Dyn. Syst. 2009, suppl., 143-150. ISI Zbl 1184.93013, MR2641390
  51. O. Cârjă, A. Lazu, Regularity of the minimal time function for heat equation, An. Stiint. Univ. Al. I. Cuza Iasi, Ser. Noua Mat. 55, No.2 (2009) 355-364. ISI Zbl pre05649814, MR2562253
  52. O. Cârjă, A. Lazu, Lyapunov pairs for semilinear evolutions, International Journal of Qualitative Theory of Differential Equations and Applications, Vol. 3, No.1 (2009) 60-65.
  53. O. Cârjă, Lyapunov pairs for multi-valued semi-linear evolutions, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 73, No. 10, 3382-3389 (2010), ISI Zbl pre05800109
  54. O. Cârjă, V. Postolache, Necessary and sufficient conditions for local invariance for semilinear differential inclusions, Set-Valued Var. Anal. 19 (2011), no. 4, 537-554. MR2836709; Zbl pre06013490
  55. O. Cârjă, V. Postolache, A priori estimates for solutions of differential inclusions, Discrete Contin. Dyn. Syst. 2011, Dynamical systems, differential equations and applications. 8th AIMS Conference. Suppl. Vol. I, 258-264. ISBN: 978-1-60133-007-9; 1-60133-007-3 MR2987406
  56. O. Cârjă, A. Lazu, Existence of global solutions to differential inclusions; apriori bounds, Math. Bohem. 137 (2012), no. 2, 195-200. MR2978265
  57. O. Cârjă, A. Lazu, Lower semi-continuity of the solution set for semilinear differential inclusions, J. Math. Anal. Appl. 385 (2012), no. 2, 865-873. MR2834859
  58. O. Cârjă, A. Lazu, Approximate weak invariance for differential inclusions in Banach spaces, Journal of Dynamical and Control Systems, 18 (2012), no. 2, 215-227. MR2914416
  59. O. Cârjă, The minimum time function for semilinear evolutions, SIAM Journal on Control and Optimization, 2012, 50 (3), pp. 1265-1282. MR2968055
  60. O. Cârjă, A. Lazu, On the regularity of the solution map for differential inclusions, Dynamic Systems and Applications, 2012, 21 (2-3), pp. 457-465. MR2918391
  61. O. Cârjă, T. Donchev, V. Postolache, Nonlinear Evolution Inclusions with One-sided Perron Right-hand Side, Journal of Dynamical and Control Systems, 2013, 18 (3), pp. 439-456. MR3085700
  62. O. Cârjă, A. Lazu, How mild can slow controls be?, Mathematics of Control, Signals, and Systems 26 (2014), pp. 547-562.
  63. O. Cârjă, A. Lazu, Estimates of slow controls, European Scientific Journal, 2014, May 2014/Special Edition, pp. 172-176.
  64. O. Cârjă, T. Donchev, V. Postolache, Relaxation results for nonlinear evolution inclusions with one-sided Perron right-hand side, Set-Valued Var. Anal. 22 (4), 2014, pp. 657-671.
  65. O. Cârjă, T. Donchev, M. Rafaqat, R. Ahmed, Viability of fractional differential inclusions, Applied Mathematics Letters, 2014, 38, pp. 48-51.
  66. O. Cârjă, A. Lazu, On the continuity of the state constrained minimal time function, Electronic Journal of Qualitative Theory of Differential Equations, 2014, No. 48, pp. 1-16.
  67. O. Cârjă, A. Miranville, C. Morosanu, On the existence, uniqueness and regularity of solutions to the phase-field system with a general regular potential and a general class of nonlinear and non-homogeneous boundary conditions, Nonlinear Analysis: Theory, Methods & Applications, 2015, 113, pp. 190-208.
  68. O. Cârjă, T. Donchev, A. I. Lazu, Generalized solutions of semilinear evolution inclusions, SIAM J. Optim. 26 (2), pp. 1365-1378, 2016.
  69. O. Benniche, O. Cârjă, Approximate and near weak invariance for nonautonomous differential inclusions, J Dyn Control Syst, 2016, doi:10.1007/s10883-016-9312-0.
  70. O. Benniche, O. Cârjă, Viability for quasi-autonomous semilinear evolution inclusions, Mediterranean Journal of Mathematics, 2016, doi:10.1007/s00009-016-0739-z.