Conf. dr. Mihai Necula

Books

  • O. Carja, M. Necula, I. I. Vrabie, Viability, Invariance and Applications, North-Holland Mathematics Studies 207, Elsevier, 2007, ISBN 978-0-444-52761-5.
  • M. D. Burlica, M. Necula, D. Rosu, I. I. Vrabie, Delay Differential Evolutions Subjected to Nonlocal Initial Conditions, Series: Monographs and Research Notes in Mathematics, Chapman and Hall/CRC, 2016, ISBN 978-1-498-74644-1.

Research papers

  • M. Necula, M. Popescu, I. I. Vrabie, Viability for delay evolution equations with nonlocal initial conditions, Nonlinear Anal., Theory Methods Appl., 121 (2015) 164-172, doi:10.1016/j.na.2014.11.014;
  • M. Necula, I. I. Vrabie, Nonlinear delay evolution inclusions with general nonlocal initial conditions, Ann. Acad. Rom. Sci., Math. Appl., 7 (2015) 67-97;
  • M. Necula, M. Popescu, Viability of a time dependent closed set with respect to a semilinear delay evolution inclusion, An. St. Univ. "Al. I.Cuza" Iasi, Sect. I a Mat. 61 (2015), 41-58;
  • M. Necula, M. Popescu, I. I.Vrabie, Nonlinear delay evolution inclusions on graphs, Proceedings of the 26ths IFIP TC 7 Conference held at the Alpen-Adria Universitat Klagenfurt, Austria between September 8-13, 2013, Christian Potzsche, Clemens Heuberger, Barbara Kaltenbacher and Franz Rendl Editors, Lecture Notes in Computer Science, Springer Verlag, 2014, 207--216;
  • M. Necula, M. Popescu, I. I. Vrabie}, Viability for delay evolution equations with nonlocal initial conditions, Nonlin. Anal. TMA, DOI: 10.1016/j.na.2014.11.014;
  • M. Necula, M. Popescu, I. I. Vrabie, Nonlinear evolution equations on locally closed graphs, RACSAM. Rev. R. Acad. Cien. Serie A. 104(2010) 97-114.
  • M. Necula, M. Popescu, I. I. Vrabie, Evolution equations on locally closed graphs and applications, Nonlinear Anal. Theor. Math. Appl., 71(2009) e2205-e2216.
  • O. Carja, M. Necula, I. I. Vrabie, Tangent sets, viability for differential inclusions and applications, Nonlinear Anal. Theor. Math. Appl., 71(2009) e979-e990.
  • O. Carja, M. Necula, I. I. Vrabie, Necessary and sufficient conditions for viability for semilinear differential inclusions, Trans. Amer. Math. Soc, 361(2009) No. 1, 343-390.
  • M. Necula, M. Popescu, I. I. Vrabie, Viability for differential inclusions on graphs, Set-Valued Analysis, 16(2008), 961-981.
  • O. Carja, M. Necula, I. I. Vrabie, Orthogonal solutions for a hyperbolic system, Bul. Acad. Stiinte Repub. Mold., Mat. 56(2008), 125-130.
  • O. Carja, M. Necula, I. I. Vrabie, Necessary and sufficient conditions for viability for nonlinear evolution inclusions, Set-Valued Analysis, 16(2008), 701-731.
  • M. Necula, I. I. Vrabie, A viability result for a class of fully nonlinear reaction-diffusion systems, Nonlinear Anal. Theor. Math. Appl. 69(2008), 1732-1743.
  • O. Carja, M. Necula, I. I. Vrabie, Invariance for single-valued perturbed fully nonlinear evolutions, An. Univ. de Vest, Timisoara, Ser. Mat.-Inform. XLV, 1 (2007), 109-116.
  • V. Lupulescu, M. Necula, A viable result for nonconvex differential inclusions with memory, Port. Math. (N.S.) 63 (2006), no. 3, 335--350.
  • V. Lupulescu, M. Necula, A viability result for nonconvex semilinear functional differential inclusions, Discuss. Math. Differ. Incl. Control Optim. 25 (2005), 109--128.
  • V. Lupulescu, M. Necula, A viability result for nonlinear functional differential inclusions, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 51 (2005), no. 2, 319--336 (2006).
  • V. Lupulescu, M. Necula, Viability and local invariance for non-convex semilinear differential inclusions. Nonlinear Funct. Anal. Appl. 9 (2004), no. 3, 495--512.
  • O. Carja, M. Necula, I. I. Vrabie, Local invariance via comparison functions, Electron. J. Differential Equations 2004, No. 50, 14 pp. (electronic).
  • M. Necula, Viability of variable domains for differential equations governed by Caratheodory perturbations of nonlinear m-accretive operators, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 48 (2002), no. 1, 41--60 (2003).
  • M. Necula, Viability of variable domains for nonautonomous semilinear differential equations, Panamer. Math. J. 11 (2001), no. 3, 65--80.
  • M. Necula, On the behaviour of the solutions of the equation (a(t)x'(t))(n)+f(t,x(t))=0, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 31 (1985), no. 3, 267--273
  • M. Necula, Le comportement des solutions de certaines classes de systemes differentiels non lineaires "feed-back" multicompartimentes. Stud. Cerc. Mat. 37 (1985), no. 4, 328--341.

Scholar papers

  • M. Necula, Diferenta simetrica a doua multimi, Recreatii Matematice, II (2000), nr. 1, p. 9--13;
  • M. Necula, Ecuatii matriceale în M2(C), Recreatii Matematice, nr. 2, II (2000), p 10--17;
  • M. Necula, Un exemplu de functie continua si nicaieri derivabila, Recreatii Matematice, III (2001), nr. 3, p. 14--20;