Research project PN-II-RU-TE-2011-3-0108, 51/05.10.2011

a grant of the Romanian National Authority for Scientific Research, CNCS - UEFISCDI

Director: Professor Cezar Oniciuc

  


  Project Title
  Research Team
  Objectives
  Results

  Reports


1. PROJECT TITLE

BIHARMONIC MAPS AND SUBMANIFOLDS IN CERTAIN GEOMETRIC CONTEXTS
Contract PN-II-RU-TE-2011-3-0108,

Nr. 51/05.10.2011

 

Abstract: A harmonic map between Riemannian manifolds is a critical point for the energy functional; the Euler-Lagrange equation associated to this functional is obtained by vanishing the tension field. The biharmonic maps arise in the work of J. Eells and J.H. Sampson as a natural generalization of harmonic maps. Accordingly, a smooth map is biharmonic if it is a critical point of the bioenergy functional. In the case of submanifolds, the biharmonicity leads to biharmonic submanifolds, which represent an interesting generalization of the classical minimal submanifolds. The aim of the present project is to study the biharmonicity in various geometric contexts. This can be integrated in a wider research direction, in which new examples of biharmonic maps and new classification results for biharmonic submanifolds are anticipated to be obtained. A complementary research direction of the present project consists in the study, using cohomological methods, of some topological and algebraic properties of manifolds and submanifolds, in contexts that may lead to such properties for biharmonic submanifolds.


2. RESEARCH TEAM

No.

First and last name

Title

Project role

1

Cezar Oniciuc

Professor

Project manager

2

Razvan Litcanu

Professor

Senior researcher

3

Iulian Stoleriu

Lecturer

Postdoctoral researcher

4

Dorel Fetcu

Professor

Postdoctoral researcher

5

Adina Balmus

Teaching Assistant

Postdoctoral researcher

6

Simona Nistor

-

MSc student


3. OBJECTIVES

O1.       Study of biharmonic submanifolds in 7-dimensional Sasakian space forms and in the complex projective space CP3

O2.       Study of biharmonic submanifolds with additional geometric properties in spheres

O3.       Study of parallel mean curvature vector field submanifolds in Riemannian manifolds

O4.       Study of biharmonic maps in Lie groups

O5.       Study of certain biharmonic type equations from the analytic point of view

O6.       Study of direct images of certain cohomological objects by some classes of morphisms of manifolds

O7.       Edit a monograph on biharmonic maps and submanifolds

4. RESULTS

2014

ISI published papers

1.      E. Loubeau, C. Oniciuc, Biharmonic surfaces of constant mean curvature, Pacific Journal of Mathematics 271 (1), 213-230, 2014 .

2.      R. Caddeo, S. Montaldo, C. Oniciuc, P. Piu, Surfaces in 3-dimensional space forms with divergence-free stress-bienergy tensor, Annali di Matematica Pura ed Applicata 193 (2), 529-550, 2014.

3.      J.I. Burgos Gil, G. Freixas, R. Litcanu, Generalized holomorphic analytic torsion, J. Eur. Math. Soc. 6 (3), 463-535, 2014, arXiv:1011.3702


ISI accepted papers

1.      S. Montaldo, C. Oniciuc, A. Ratto, Biconservative surfaces, to appear in Journal of Geometric Analysis.

2.      S. Montaldo, C. Oniciuc, A. Ratto, Proper biconservative immersions into the Euclidean space, to appear in Annali di Matematica Pura ed Applicata.

3.      D. Fetcu, A. L. Pinheiro, Biharmonic surfaces with parallel mean curvature in complex space forms, to appear in Kyoto Journal of Mathematics arXiv:1303.4279.


Preprints

1.      E. Loubeau, C. Oniciuc, CMC proper-biharmonic surfaces of constant Gaussian curvature in spheres.



2013

ISI published papers

1.      D. Fetcu, C. Oniciuc, H. Rosenberg, Biharmonic Submanifolds with Parallel Mean Curvature in S^n x R, Journal of Geometric Analysis 23 (4) (2013), 2158-2176. arXiv:0911.3244

2.      A. Balmus, S. Montaldo, C. Oniciuc, Biharmonic PNMC submanifolds in spheres, Arkiv fur Mathematik 51 (2) (2013), 197-221. arXiv:1110.4258

3.      D. Fetcu, H. Rosenberg, On complete submanifolds with parallel mean curvature in product spaces, Revista Matematica Iberoamericana 29 (4) (2013), 1283-1306. arXiv:1112.3452

 

2012

ISI published papers

1.      D. Fetcu, C. Oniciuc, Biharmonic integral C-parallel submanifolds in 7-dimensional Sasakian space forms, Tohoku Mathematical Journal 64(2) (2012), 195-222. arXiv:0911.3244

2.      A. Balmus, S. Montaldo, C. Oniciuc, New results toward the classification of biharmonic submanifolds in Sn. An. St. Univ. Ovidius Constanta, Seria Matematica 20 (2) (2012), 89-114. arXiv:1111.6063

3.      M. Crasmareanu, I. Stoleriu, Nonholonomic dynamics of second order and the Heisenberg spinning particle, Int. Jnl. Geo. Met. Mod. Phys., 9 (7) (2012), 1-9.

 

Habilitation Thesis

1.      Cezar Oniciuc, Biharmonic submanifolds in space forms, Habilitation Thesis, 2012.

 

Other

 

1.      D. Fetcu, Subvariedades biharmonicas em variedades Riemannianas (Notas de aula), Universidade Federal da Bahia, Pos-Graduacao em Matematica - Verao 2013, 02 de Janeiro a 28 de Fevereiro.

5. REPORTS

Scientific report 2011 (RO); Scientific report 2011 (EN)
Scientific report 2012 (RO); Scientific report 2012 (EN)
Scientific report 2013 (RO); Scientific report 2013 (EN)
Final scientific report 2014 (RO); Final scientific report 2014 (EN)

 

 

Last Updated: 20/11/2014